ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coscn GIF version

Theorem coscn 12859
Description: Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.)
Assertion
Ref Expression
coscn cos ∈ (ℂ–cn→ℂ)

Proof of Theorem coscn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cos 11357 . 2 cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
2 eqid 2139 . . . . . . . 8 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
32addcncntop 12721 . . . . . . . . 9 + ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))
43a1i 9 . . . . . . . 8 (⊤ → + ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))))
5 efcn 12857 . . . . . . . . . 10 exp ∈ (ℂ–cn→ℂ)
65a1i 9 . . . . . . . . 9 (⊤ → exp ∈ (ℂ–cn→ℂ))
7 ax-icn 7715 . . . . . . . . . 10 i ∈ ℂ
8 eqid 2139 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥))
98mulc1cncf 12745 . . . . . . . . . 10 (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
107, 9mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ))
116, 10cncfmpt1f 12753 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ))
12 negicn 7963 . . . . . . . . . 10 -i ∈ ℂ
13 eqid 2139 . . . . . . . . . . 11 (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥))
1413mulc1cncf 12745 . . . . . . . . . 10 (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
1512, 14mp1i 10 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ))
166, 15cncfmpt1f 12753 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ))
172, 4, 11, 16cncfmpt2fcntop 12754 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ))
18 cncff 12733 . . . . . . 7 ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
1917, 18syl 14 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
20 eqid 2139 . . . . . . 7 (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))
2120fmpt 5570 . . . . . 6 (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ)
2219, 21sylibr 133 . . . . 5 (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ)
23 eqidd 2140 . . . . 5 (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))))
24 eqidd 2140 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2)))
25 oveq1 5781 . . . . 5 (𝑦 = ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) → (𝑦 / 2) = (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
2622, 23, 24, 25fmptcof 5587 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)))
27 2cn 8791 . . . . . . 7 2 ∈ ℂ
28 2ap0 8813 . . . . . . 7 2 # 0
29 eqid 2139 . . . . . . . 8 (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2))
3029divccncfap 12746 . . . . . . 7 ((2 ∈ ℂ ∧ 2 # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ))
3127, 28, 30mp2an 422 . . . . . 6 (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)
3231a1i 9 . . . . 5 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ))
3317, 32cncfco 12747 . . . 4 (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ))
3426, 33eqeltrrd 2217 . . 3 (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ))
3534mptru 1340 . 2 (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ)
361, 35eqeltri 2212 1 cos ∈ (ℂ–cn→ℂ)
Colors of variables: wff set class
Syntax hints:  wtru 1332  wcel 1480  wral 2416   class class class wbr 3929  cmpt 3989  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cc 7618  0cc0 7620  ici 7622   + caddc 7623   · cmul 7625  cmin 7933  -cneg 7934   # cap 8343   / cdiv 8432  2c2 8771  abscabs 10769  expce 11348  cosccos 11351  MetOpencmopn 12154   Cn ccn 12354   ×t ctx 12421  cnccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-shft 10587  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-cos 11357  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  cosz12  12861
  Copyright terms: Public domain W3C validator