Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coscn | GIF version |
Description: Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
Ref | Expression |
---|---|
coscn | ⊢ cos ∈ (ℂ–cn→ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cos 11530 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
2 | eqid 2157 | . . . . . . . 8 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
3 | 2 | addcncntop 12912 | . . . . . . . . 9 ⊢ + ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))) |
4 | 3 | a1i 9 | . . . . . . . 8 ⊢ (⊤ → + ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))) |
5 | efcn 13049 | . . . . . . . . . 10 ⊢ exp ∈ (ℂ–cn→ℂ) | |
6 | 5 | a1i 9 | . . . . . . . . 9 ⊢ (⊤ → exp ∈ (ℂ–cn→ℂ)) |
7 | ax-icn 7810 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
8 | eqid 2157 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥)) | |
9 | 8 | mulc1cncf 12936 | . . . . . . . . . 10 ⊢ (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
10 | 7, 9 | mp1i 10 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
11 | 6, 10 | cncfmpt1f 12944 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
12 | negicn 8059 | . . . . . . . . . 10 ⊢ -i ∈ ℂ | |
13 | eqid 2157 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥)) | |
14 | 13 | mulc1cncf 12936 | . . . . . . . . . 10 ⊢ (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
15 | 12, 14 | mp1i 10 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
16 | 6, 15 | cncfmpt1f 12944 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
17 | 2, 4, 11, 16 | cncfmpt2fcntop 12945 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ)) |
18 | cncff 12924 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) | |
19 | 17, 18 | syl 14 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
20 | eqid 2157 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) | |
21 | 20 | fmpt 5614 | . . . . . 6 ⊢ (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
22 | 19, 21 | sylibr 133 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ) |
23 | eqidd 2158 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) | |
24 | eqidd 2158 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2))) | |
25 | oveq1 5825 | . . . . 5 ⊢ (𝑦 = ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) → (𝑦 / 2) = (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
26 | 22, 23, 24, 25 | fmptcof 5631 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) |
27 | 2cn 8887 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
28 | 2ap0 8909 | . . . . . . 7 ⊢ 2 # 0 | |
29 | eqid 2157 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2)) | |
30 | 29 | divccncfap 12937 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
31 | 27, 28, 30 | mp2an 423 | . . . . . 6 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ) |
32 | 31 | a1i 9 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
33 | 17, 32 | cncfco 12938 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ)) |
34 | 26, 33 | eqeltrrd 2235 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ)) |
35 | 34 | mptru 1344 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ) |
36 | 1, 35 | eqeltri 2230 | 1 ⊢ cos ∈ (ℂ–cn→ℂ) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1336 ∈ wcel 2128 ∀wral 2435 class class class wbr 3965 ↦ cmpt 4025 ∘ ccom 4587 ⟶wf 5163 ‘cfv 5167 (class class class)co 5818 ℂcc 7713 0cc0 7715 ici 7717 + caddc 7718 · cmul 7720 − cmin 8029 -cneg 8030 # cap 8439 / cdiv 8528 2c2 8867 abscabs 10879 expce 11521 cosccos 11524 MetOpencmopn 12345 Cn ccn 12545 ×t ctx 12612 –cn→ccncf 12917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 ax-caucvg 7835 ax-addf 7837 ax-mulf 7838 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-disj 3943 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-isom 5176 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-of 6026 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-frec 6332 df-1o 6357 df-oadd 6361 df-er 6473 df-map 6588 df-pm 6589 df-en 6679 df-dom 6680 df-fin 6681 df-sup 6920 df-inf 6921 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-n0 9074 df-z 9151 df-uz 9423 df-q 9511 df-rp 9543 df-xneg 9661 df-xadd 9662 df-ico 9780 df-fz 9895 df-fzo 10024 df-seqfrec 10327 df-exp 10401 df-fac 10582 df-bc 10604 df-ihash 10632 df-shft 10697 df-cj 10724 df-re 10725 df-im 10726 df-rsqrt 10880 df-abs 10881 df-clim 11158 df-sumdc 11233 df-ef 11527 df-cos 11530 df-rest 12313 df-topgen 12332 df-psmet 12347 df-xmet 12348 df-met 12349 df-bl 12350 df-mopn 12351 df-top 12356 df-topon 12369 df-bases 12401 df-ntr 12456 df-cn 12548 df-cnp 12549 df-tx 12613 df-cncf 12918 df-limced 12985 df-dvap 12986 |
This theorem is referenced by: cosz12 13061 ioocosf1o 13135 |
Copyright terms: Public domain | W3C validator |