| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coscn | GIF version | ||
| Description: Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
| Ref | Expression |
|---|---|
| coscn | ⊢ cos ∈ (ℂ–cn→ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cos 12148 | . 2 ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
| 2 | eqid 2229 | . . . . . . . 8 ⊢ (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − )) | |
| 3 | 2 | addcncntop 15221 | . . . . . . . . 9 ⊢ + ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − ))) |
| 4 | 3 | a1i 9 | . . . . . . . 8 ⊢ (⊤ → + ∈ (((MetOpen‘(abs ∘ − )) ×t (MetOpen‘(abs ∘ − ))) Cn (MetOpen‘(abs ∘ − )))) |
| 5 | efcn 15427 | . . . . . . . . . 10 ⊢ exp ∈ (ℂ–cn→ℂ) | |
| 6 | 5 | a1i 9 | . . . . . . . . 9 ⊢ (⊤ → exp ∈ (ℂ–cn→ℂ)) |
| 7 | ax-icn 8082 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
| 8 | eqid 2229 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (i · 𝑥)) = (𝑥 ∈ ℂ ↦ (i · 𝑥)) | |
| 9 | 8 | mulc1cncf 15248 | . . . . . . . . . 10 ⊢ (i ∈ ℂ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 10 | 7, 9 | mp1i 10 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 11 | 6, 10 | cncfmpt1f 15257 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
| 12 | negicn 8335 | . . . . . . . . . 10 ⊢ -i ∈ ℂ | |
| 13 | eqid 2229 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℂ ↦ (-i · 𝑥)) = (𝑥 ∈ ℂ ↦ (-i · 𝑥)) | |
| 14 | 13 | mulc1cncf 15248 | . . . . . . . . . 10 ⊢ (-i ∈ ℂ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 15 | 12, 14 | mp1i 10 | . . . . . . . . 9 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (-i · 𝑥)) ∈ (ℂ–cn→ℂ)) |
| 16 | 6, 15 | cncfmpt1f 15257 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (exp‘(-i · 𝑥))) ∈ (ℂ–cn→ℂ)) |
| 17 | 2, 4, 11, 16 | cncfmpt2fcntop 15258 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ)) |
| 18 | cncff 15236 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) ∈ (ℂ–cn→ℂ) → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) | |
| 19 | 17, 18 | syl 14 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
| 20 | eqid 2229 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) | |
| 21 | 20 | fmpt 5778 | . . . . . 6 ⊢ (∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ ↔ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))):ℂ⟶ℂ) |
| 22 | 19, 21 | sylibr 134 | . . . . 5 ⊢ (⊤ → ∀𝑥 ∈ ℂ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) ∈ ℂ) |
| 23 | eqidd 2230 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) | |
| 24 | eqidd 2230 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2))) | |
| 25 | oveq1 6001 | . . . . 5 ⊢ (𝑦 = ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) → (𝑦 / 2) = (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) | |
| 26 | 22, 23, 24, 25 | fmptcof 5795 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))) |
| 27 | 2cn 9169 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
| 28 | 2ap0 9191 | . . . . . . 7 ⊢ 2 # 0 | |
| 29 | eqid 2229 | . . . . . . . 8 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) = (𝑦 ∈ ℂ ↦ (𝑦 / 2)) | |
| 30 | 29 | divccncfap 15249 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 # 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
| 31 | 27, 28, 30 | mp2an 426 | . . . . . 6 ⊢ (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ) |
| 32 | 31 | a1i 9 | . . . . 5 ⊢ (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∈ (ℂ–cn→ℂ)) |
| 33 | 17, 32 | cncfco 15250 | . . . 4 ⊢ (⊤ → ((𝑦 ∈ ℂ ↦ (𝑦 / 2)) ∘ (𝑥 ∈ ℂ ↦ ((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))))) ∈ (ℂ–cn→ℂ)) |
| 34 | 26, 33 | eqeltrrd 2307 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ)) |
| 35 | 34 | mptru 1404 | . 2 ⊢ (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2)) ∈ (ℂ–cn→ℂ) |
| 36 | 1, 35 | eqeltri 2302 | 1 ⊢ cos ∈ (ℂ–cn→ℂ) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1396 ∈ wcel 2200 ∀wral 2508 class class class wbr 4082 ↦ cmpt 4144 ∘ ccom 4720 ⟶wf 5310 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 0cc0 7987 ici 7989 + caddc 7990 · cmul 7992 − cmin 8305 -cneg 8306 # cap 8716 / cdiv 8807 2c2 9149 abscabs 11494 expce 12139 cosccos 12142 MetOpencmopn 14490 Cn ccn 14844 ×t ctx 14911 –cn→ccncf 15229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 ax-addf 8109 ax-mulf 8110 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-of 6208 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-frec 6527 df-1o 6552 df-oadd 6556 df-er 6670 df-map 6787 df-pm 6788 df-en 6878 df-dom 6879 df-fin 6880 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-xneg 9956 df-xadd 9957 df-ico 10078 df-fz 10193 df-fzo 10327 df-seqfrec 10657 df-exp 10748 df-fac 10935 df-bc 10957 df-ihash 10985 df-shft 11312 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-clim 11776 df-sumdc 11851 df-ef 12145 df-cos 12148 df-rest 13260 df-topgen 13279 df-psmet 14492 df-xmet 14493 df-met 14494 df-bl 14495 df-mopn 14496 df-top 14657 df-topon 14670 df-bases 14702 df-ntr 14755 df-cn 14847 df-cnp 14848 df-tx 14912 df-cncf 15230 df-limced 15315 df-dvap 15316 |
| This theorem is referenced by: cosz12 15439 ioocosf1o 15513 |
| Copyright terms: Public domain | W3C validator |