| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funiedgdm2vald | GIF version | ||
| Description: The set of indexed edges of an extensible structure with (at least) two slots. (Contributed by AV, 22-Sep-2020.) (Revised by Jim Kingdon, 12-Dec-2025.) |
| Ref | Expression |
|---|---|
| funvtxdm2val.a | ⊢ 𝐴 ∈ V |
| funvtxdm2val.b | ⊢ 𝐵 ∈ V |
| funvtxdm2vald.g | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| funvtxdm2vald.fun | ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) |
| funvtxdm2vald.ne | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| funvtxdm2vald.dm | ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺) |
| Ref | Expression |
|---|---|
| funiedgdm2vald | ⊢ (𝜑 → (iEdg‘𝐺) = (.ef‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funvtxdm2vald.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 2 | iedgvalg 15558 | . . 3 ⊢ (𝐺 ∈ 𝑋 → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 4 | funvtxdm2vald.fun | . . . 4 ⊢ (𝜑 → Fun (𝐺 ∖ {∅})) | |
| 5 | funvtxdm2vald.ne | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 6 | funvtxdm2vald.dm | . . . 4 ⊢ (𝜑 → {𝐴, 𝐵} ⊆ dom 𝐺) | |
| 7 | funvtxdm2val.a | . . . . 5 ⊢ 𝐴 ∈ V | |
| 8 | funvtxdm2val.b | . . . . 5 ⊢ 𝐵 ∈ V | |
| 9 | 7, 8 | fun2dmnop0 10990 | . . . 4 ⊢ ((Fun (𝐺 ∖ {∅}) ∧ 𝐴 ≠ 𝐵 ∧ {𝐴, 𝐵} ⊆ dom 𝐺) → ¬ 𝐺 ∈ (V × V)) |
| 10 | 4, 5, 6, 9 | syl3anc 1249 | . . 3 ⊢ (𝜑 → ¬ 𝐺 ∈ (V × V)) |
| 11 | 10 | iffalsed 3580 | . 2 ⊢ (𝜑 → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
| 12 | 3, 11 | eqtrd 2237 | 1 ⊢ (𝜑 → (iEdg‘𝐺) = (.ef‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1372 ∈ wcel 2175 ≠ wne 2375 Vcvv 2771 ∖ cdif 3162 ⊆ wss 3165 ∅c0 3459 ifcif 3570 {csn 3632 {cpr 3633 × cxp 4672 dom cdm 4674 Fun wfun 5264 ‘cfv 5270 2nd c2nd 6224 .efcedgf 15545 iEdgciedg 15554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-2nd 6226 df-1o 6501 df-2o 6502 df-en 6827 df-dom 6828 df-sub 8244 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-dec 9504 df-ndx 12777 df-slot 12778 df-edgf 15546 df-iedg 15556 |
| This theorem is referenced by: funiedgvalg 15576 |
| Copyright terms: Public domain | W3C validator |