ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltp1d GIF version

Theorem ltp1d 8452
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltp1d (𝜑𝐴 < (𝐴 + 1))

Proof of Theorem ltp1d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltp1 8366 . 2 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
31, 2syl 14 1 (𝜑𝐴 < (𝐴 + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1439   class class class wbr 3851  (class class class)co 5666  cr 7410  1c1 7412   + caddc 7414   < clt 7583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4458  df-iota 4993  df-fv 5036  df-ov 5669  df-pnf 7585  df-mnf 7586  df-ltxr 7588
This theorem is referenced by:  zltp1le  8865  fznatpl1  9551  fzp1disj  9555  fzneuz  9576  fzp1nel  9579  fzonn0p1  9683  rebtwn2z  9727  seq3f1olemqsumk  9989  bernneq3  10137  bcp1nk  10231  bcpasc  10235  hashfzp1  10293  iseqcoll  10308  resqrexlemover  10504  fsum1p  10873  cvgratnnlembern  10978  cvgratnnlemseq  10981  cvgratnnlemfm  10984  cvgratz  10987  mertenslemi1  10990  efcllemp  11009  nno  11245  zssinfcl  11283  sqrt2irr  11480
  Copyright terms: Public domain W3C validator