| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version | ||
| Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltp1 8871 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℝcr 7878 1c1 7880 + caddc 7882 < clt 8061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-iota 5219 df-fv 5266 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 |
| This theorem is referenced by: zltp1le 9380 fznatpl1 10151 fzp1disj 10155 fzneuz 10176 fzp1nel 10179 fzonn0p1 10287 zssinfcl 10322 rebtwn2z 10344 seq3f1olemqsumk 10604 seqf1oglem1 10611 seqf1oglem2 10612 bernneq3 10754 bcp1nk 10854 bcpasc 10858 hashfzp1 10916 seq3coll 10934 resqrexlemover 11175 fsum1p 11583 cvgratnnlembern 11688 cvgratnnlemseq 11691 cvgratnnlemfm 11694 cvgratz 11697 mertenslemi1 11700 fprodntrivap 11749 fprod1p 11764 fprodeq0 11782 efcllemp 11823 nno 12071 sqrt2irr 12330 pcprendvds 12459 pcmpt 12512 1arith 12536 4sqlem11 12570 exmidunben 12643 nninfdclemp1 12667 suplociccreex 14860 perfectlem2 15236 gausslemma2dlem4 15305 gausslemma2dlem6 15308 lgsquadlem2 15319 cvgcmp2nlemabs 15676 |
| Copyright terms: Public domain | W3C validator |