Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version |
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltp1 8735 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3981 (class class class)co 5841 ℝcr 7748 1c1 7750 + caddc 7752 < clt 7929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-iota 5152 df-fv 5195 df-ov 5844 df-pnf 7931 df-mnf 7932 df-ltxr 7934 |
This theorem is referenced by: zltp1le 9241 fznatpl1 10007 fzp1disj 10011 fzneuz 10032 fzp1nel 10035 fzonn0p1 10142 rebtwn2z 10186 seq3f1olemqsumk 10430 bernneq3 10573 bcp1nk 10671 bcpasc 10675 hashfzp1 10733 seq3coll 10751 resqrexlemover 10948 fsum1p 11355 cvgratnnlembern 11460 cvgratnnlemseq 11463 cvgratnnlemfm 11466 cvgratz 11469 mertenslemi1 11472 fprodntrivap 11521 fprod1p 11536 fprodeq0 11554 efcllemp 11595 nno 11839 zssinfcl 11877 sqrt2irr 12090 pcprendvds 12218 pcmpt 12269 1arith 12293 exmidunben 12355 nninfdclemp1 12379 suplociccreex 13202 cvgcmp2nlemabs 13871 |
Copyright terms: Public domain | W3C validator |