![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version |
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltp1 8366 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1439 class class class wbr 3851 (class class class)co 5666 ℝcr 7410 1c1 7412 + caddc 7414 < clt 7583 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-i2m1 7511 ax-0lt1 7512 ax-0id 7514 ax-rnegex 7515 ax-pre-ltadd 7522 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-xp 4458 df-iota 4993 df-fv 5036 df-ov 5669 df-pnf 7585 df-mnf 7586 df-ltxr 7588 |
This theorem is referenced by: zltp1le 8865 fznatpl1 9551 fzp1disj 9555 fzneuz 9576 fzp1nel 9579 fzonn0p1 9683 rebtwn2z 9727 seq3f1olemqsumk 9989 bernneq3 10137 bcp1nk 10231 bcpasc 10235 hashfzp1 10293 iseqcoll 10308 resqrexlemover 10504 fsum1p 10873 cvgratnnlembern 10978 cvgratnnlemseq 10981 cvgratnnlemfm 10984 cvgratz 10987 mertenslemi1 10990 efcllemp 11009 nno 11245 zssinfcl 11283 sqrt2irr 11480 |
Copyright terms: Public domain | W3C validator |