| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version | ||
| Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltp1 8999 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4083 (class class class)co 6007 ℝcr 8006 1c1 8008 + caddc 8010 < clt 8189 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-iota 5278 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-ltxr 8194 |
| This theorem is referenced by: zltp1le 9509 fznatpl1 10280 fzp1disj 10284 fzneuz 10305 fzp1nel 10308 fzonn0p1 10425 zssinfcl 10460 rebtwn2z 10482 seq3f1olemqsumk 10742 seqf1oglem1 10749 seqf1oglem2 10750 bernneq3 10892 bcp1nk 10992 bcpasc 10996 hashfzp1 11054 seq3coll 11072 resqrexlemover 11529 fsum1p 11937 cvgratnnlembern 12042 cvgratnnlemseq 12045 cvgratnnlemfm 12048 cvgratz 12051 mertenslemi1 12054 fprodntrivap 12103 fprod1p 12118 fprodeq0 12136 efcllemp 12177 nno 12425 sqrt2irr 12692 pcprendvds 12821 pcmpt 12874 1arith 12898 4sqlem11 12932 exmidunben 13005 nninfdclemp1 13029 suplociccreex 15306 perfectlem2 15682 gausslemma2dlem4 15751 gausslemma2dlem6 15754 lgsquadlem2 15765 cvgcmp2nlemabs 16430 |
| Copyright terms: Public domain | W3C validator |