| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version | ||
| Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltp1 8888 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℝcr 7895 1c1 7897 + caddc 7899 < clt 8078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-iota 5220 df-fv 5267 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 |
| This theorem is referenced by: zltp1le 9397 fznatpl1 10168 fzp1disj 10172 fzneuz 10193 fzp1nel 10196 fzonn0p1 10304 zssinfcl 10339 rebtwn2z 10361 seq3f1olemqsumk 10621 seqf1oglem1 10628 seqf1oglem2 10629 bernneq3 10771 bcp1nk 10871 bcpasc 10875 hashfzp1 10933 seq3coll 10951 resqrexlemover 11192 fsum1p 11600 cvgratnnlembern 11705 cvgratnnlemseq 11708 cvgratnnlemfm 11711 cvgratz 11714 mertenslemi1 11717 fprodntrivap 11766 fprod1p 11781 fprodeq0 11799 efcllemp 11840 nno 12088 sqrt2irr 12355 pcprendvds 12484 pcmpt 12537 1arith 12561 4sqlem11 12595 exmidunben 12668 nninfdclemp1 12692 suplociccreex 14944 perfectlem2 15320 gausslemma2dlem4 15389 gausslemma2dlem6 15392 lgsquadlem2 15403 cvgcmp2nlemabs 15763 |
| Copyright terms: Public domain | W3C validator |