| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version | ||
| Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltp1 8979 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 ℝcr 7986 1c1 7988 + caddc 7990 < clt 8169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-iota 5274 df-fv 5322 df-ov 5997 df-pnf 8171 df-mnf 8172 df-ltxr 8174 |
| This theorem is referenced by: zltp1le 9489 fznatpl1 10260 fzp1disj 10264 fzneuz 10285 fzp1nel 10288 fzonn0p1 10404 zssinfcl 10439 rebtwn2z 10461 seq3f1olemqsumk 10721 seqf1oglem1 10728 seqf1oglem2 10729 bernneq3 10871 bcp1nk 10971 bcpasc 10975 hashfzp1 11033 seq3coll 11051 resqrexlemover 11507 fsum1p 11915 cvgratnnlembern 12020 cvgratnnlemseq 12023 cvgratnnlemfm 12026 cvgratz 12029 mertenslemi1 12032 fprodntrivap 12081 fprod1p 12096 fprodeq0 12114 efcllemp 12155 nno 12403 sqrt2irr 12670 pcprendvds 12799 pcmpt 12852 1arith 12876 4sqlem11 12910 exmidunben 12983 nninfdclemp1 13007 suplociccreex 15283 perfectlem2 15659 gausslemma2dlem4 15728 gausslemma2dlem6 15731 lgsquadlem2 15742 cvgcmp2nlemabs 16331 |
| Copyright terms: Public domain | W3C validator |