| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version | ||
| Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltp1 8930 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 ℝcr 7937 1c1 7939 + caddc 7941 < clt 8120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-xp 4686 df-iota 5238 df-fv 5285 df-ov 5957 df-pnf 8122 df-mnf 8123 df-ltxr 8125 |
| This theorem is referenced by: zltp1le 9440 fznatpl1 10211 fzp1disj 10215 fzneuz 10236 fzp1nel 10239 fzonn0p1 10353 zssinfcl 10388 rebtwn2z 10410 seq3f1olemqsumk 10670 seqf1oglem1 10677 seqf1oglem2 10678 bernneq3 10820 bcp1nk 10920 bcpasc 10924 hashfzp1 10982 seq3coll 11000 resqrexlemover 11371 fsum1p 11779 cvgratnnlembern 11884 cvgratnnlemseq 11887 cvgratnnlemfm 11890 cvgratz 11893 mertenslemi1 11896 fprodntrivap 11945 fprod1p 11960 fprodeq0 11978 efcllemp 12019 nno 12267 sqrt2irr 12534 pcprendvds 12663 pcmpt 12716 1arith 12740 4sqlem11 12774 exmidunben 12847 nninfdclemp1 12871 suplociccreex 15146 perfectlem2 15522 gausslemma2dlem4 15591 gausslemma2dlem6 15594 lgsquadlem2 15605 cvgcmp2nlemabs 16086 |
| Copyright terms: Public domain | W3C validator |