ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltp1d GIF version

Theorem ltp1d 8951
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
ltp1d (𝜑𝐴 < (𝐴 + 1))

Proof of Theorem ltp1d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltp1 8865 . 2 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
31, 2syl 14 1 (𝜑𝐴 < (𝐴 + 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164   class class class wbr 4030  (class class class)co 5919  cr 7873  1c1 7875   + caddc 7877   < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-iota 5216  df-fv 5263  df-ov 5922  df-pnf 8058  df-mnf 8059  df-ltxr 8061
This theorem is referenced by:  zltp1le  9374  fznatpl1  10145  fzp1disj  10149  fzneuz  10170  fzp1nel  10173  fzonn0p1  10281  rebtwn2z  10326  seq3f1olemqsumk  10586  seqf1oglem1  10593  seqf1oglem2  10594  bernneq3  10736  bcp1nk  10836  bcpasc  10840  hashfzp1  10898  seq3coll  10916  resqrexlemover  11157  fsum1p  11564  cvgratnnlembern  11669  cvgratnnlemseq  11672  cvgratnnlemfm  11675  cvgratz  11678  mertenslemi1  11681  fprodntrivap  11730  fprod1p  11745  fprodeq0  11763  efcllemp  11804  nno  12050  zssinfcl  12088  sqrt2irr  12303  pcprendvds  12431  pcmpt  12484  1arith  12508  4sqlem11  12542  exmidunben  12586  nninfdclemp1  12610  suplociccreex  14803  gausslemma2dlem4  15221  gausslemma2dlem6  15224  lgsquadlem2  15235  cvgcmp2nlemabs  15592
  Copyright terms: Public domain W3C validator