![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltp1d | GIF version |
Description: A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
ltp1d | ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltp1 8863 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 1c1 7873 + caddc 7875 < clt 8054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-iota 5215 df-fv 5262 df-ov 5921 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: zltp1le 9371 fznatpl1 10142 fzp1disj 10146 fzneuz 10167 fzp1nel 10170 fzonn0p1 10278 rebtwn2z 10323 seq3f1olemqsumk 10583 seqf1oglem1 10590 seqf1oglem2 10591 bernneq3 10733 bcp1nk 10833 bcpasc 10837 hashfzp1 10895 seq3coll 10913 resqrexlemover 11154 fsum1p 11561 cvgratnnlembern 11666 cvgratnnlemseq 11669 cvgratnnlemfm 11672 cvgratz 11675 mertenslemi1 11678 fprodntrivap 11727 fprod1p 11742 fprodeq0 11760 efcllemp 11801 nno 12047 zssinfcl 12085 sqrt2irr 12300 pcprendvds 12428 pcmpt 12481 1arith 12505 4sqlem11 12539 exmidunben 12583 nninfdclemp1 12607 suplociccreex 14778 gausslemma2dlem4 15180 gausslemma2dlem6 15183 cvgcmp2nlemabs 15522 |
Copyright terms: Public domain | W3C validator |