Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resubcld | GIF version |
Description: Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resubcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
resubcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | resubcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | resubcl 8183 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 (class class class)co 5853 ℝcr 7773 − cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 |
This theorem is referenced by: ltsubadd 8351 lesubadd 8353 ltaddsub 8355 leaddsub 8357 lesub1 8375 lesub2 8376 ltsub1 8377 ltsub2 8378 lt2sub 8379 le2sub 8380 rereim 8505 ltmul1a 8510 cru 8521 lemul1a 8774 ztri3or 9255 lincmb01cmp 9960 iccf1o 9961 rebtwn2z 10211 qbtwnrelemcalc 10212 qbtwnre 10213 intfracq 10276 modqval 10280 modqlt 10289 modqsubdir 10349 ser3le 10474 expnbnd 10599 crre 10821 remullem 10835 recvguniqlem 10958 resqrexlemover 10974 resqrexlemcalc2 10979 resqrexlemcalc3 10980 resqrexlemnmsq 10981 resqrexlemnm 10982 resqrexlemcvg 10983 resqrexlemglsq 10986 resqrexlemga 10987 fzomaxdiflem 11076 caubnd2 11081 amgm2 11082 icodiamlt 11144 qdenre 11166 maxabslemab 11170 maxabslemlub 11171 maxltsup 11182 bdtrilem 11202 bdtri 11203 mulcn2 11275 reccn2ap 11276 climle 11297 climsqz 11298 climsqz2 11299 climcvg1nlem 11312 fsumle 11426 cvgratnnlembern 11486 cvgratnnlemsumlt 11491 cvgratnnlemfm 11492 cvgratnnlemrate 11493 cvgratnn 11494 efltim 11661 sin01bnd 11720 sin01gt0 11724 cos12dec 11730 uzwodc 11992 pythagtriplem12 12229 pythagtriplem14 12231 blss2ps 13200 blss2 13201 blssps 13221 blss 13222 ivthinclemlopn 13408 ivthinclemuopn 13410 dvcjbr 13466 reeff1oleme 13487 efltlemlt 13489 sin0pilem1 13496 tangtx 13553 cosordlem 13564 cosq34lt1 13565 cvgcmp2nlemabs 14064 iooref1o 14066 trilpolemlt1 14073 trirec0 14076 apdifflemf 14078 |
Copyright terms: Public domain | W3C validator |