Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resubcld | GIF version |
Description: Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resubcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
resubcld | ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | resubcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | resubcl 8195 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 (class class class)co 5865 ℝcr 7785 − cmin 8102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-neg 8105 |
This theorem is referenced by: ltsubadd 8363 lesubadd 8365 ltaddsub 8367 leaddsub 8369 lesub1 8387 lesub2 8388 ltsub1 8389 ltsub2 8390 lt2sub 8391 le2sub 8392 rereim 8517 ltmul1a 8522 cru 8533 lemul1a 8788 ztri3or 9269 lincmb01cmp 9974 iccf1o 9975 rebtwn2z 10225 qbtwnrelemcalc 10226 qbtwnre 10227 intfracq 10290 modqval 10294 modqlt 10303 modqsubdir 10363 ser3le 10488 expnbnd 10613 crre 10834 remullem 10848 recvguniqlem 10971 resqrexlemover 10987 resqrexlemcalc2 10992 resqrexlemcalc3 10993 resqrexlemnmsq 10994 resqrexlemnm 10995 resqrexlemcvg 10996 resqrexlemglsq 10999 resqrexlemga 11000 fzomaxdiflem 11089 caubnd2 11094 amgm2 11095 icodiamlt 11157 qdenre 11179 maxabslemab 11183 maxabslemlub 11184 maxltsup 11195 bdtrilem 11215 bdtri 11216 mulcn2 11288 reccn2ap 11289 climle 11310 climsqz 11311 climsqz2 11312 climcvg1nlem 11325 fsumle 11439 cvgratnnlembern 11499 cvgratnnlemsumlt 11504 cvgratnnlemfm 11505 cvgratnnlemrate 11506 cvgratnn 11507 efltim 11674 sin01bnd 11733 sin01gt0 11737 cos12dec 11743 uzwodc 12005 pythagtriplem12 12242 pythagtriplem14 12244 blss2ps 13486 blss2 13487 blssps 13507 blss 13508 ivthinclemlopn 13694 ivthinclemuopn 13696 dvcjbr 13752 reeff1oleme 13773 efltlemlt 13775 sin0pilem1 13782 tangtx 13839 cosordlem 13850 cosq34lt1 13851 cvgcmp2nlemabs 14350 iooref1o 14352 trilpolemlt1 14359 trirec0 14362 apdifflemf 14364 |
Copyright terms: Public domain | W3C validator |