![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recidnq | GIF version |
Description: A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) |
Ref | Expression |
---|---|
recidnq | ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) = 1Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recclnq 7142 | . 2 ⊢ (𝐴 ∈ Q → (*Q‘𝐴) ∈ Q) | |
2 | eqid 2113 | . . 3 ⊢ (*Q‘𝐴) = (*Q‘𝐴) | |
3 | recmulnqg 7141 | . . 3 ⊢ ((𝐴 ∈ Q ∧ (*Q‘𝐴) ∈ Q) → ((*Q‘𝐴) = (*Q‘𝐴) ↔ (𝐴 ·Q (*Q‘𝐴)) = 1Q)) | |
4 | 2, 3 | mpbii 147 | . 2 ⊢ ((𝐴 ∈ Q ∧ (*Q‘𝐴) ∈ Q) → (𝐴 ·Q (*Q‘𝐴)) = 1Q) |
5 | 1, 4 | mpdan 415 | 1 ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) = 1Q) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1312 ∈ wcel 1461 ‘cfv 5079 (class class class)co 5726 Qcnq 7030 1Qc1q 7031 ·Q cmq 7033 *Qcrq 7034 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-irdg 6219 df-1o 6265 df-oadd 6269 df-omul 6270 df-er 6381 df-ec 6383 df-qs 6387 df-ni 7054 df-mi 7056 df-mpq 7095 df-enq 7097 df-nqqs 7098 df-mqqs 7100 df-1nqqs 7101 df-rq 7102 |
This theorem is referenced by: recrecnq 7144 rec1nq 7145 halfnqq 7160 prarloclemarch 7168 ltrnqg 7170 addnqprllem 7277 addnqprulem 7278 addnqprl 7279 addnqpru 7280 appdivnq 7313 mulnqprl 7318 mulnqpru 7319 1idprl 7340 1idpru 7341 recexprlem1ssl 7383 recexprlem1ssu 7384 recexprlemss1l 7385 recexprlemss1u 7386 recidpipr 7585 |
Copyright terms: Public domain | W3C validator |