ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcon1 GIF version

Theorem negcon1 8131
Description: Negative contraposition law. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
negcon1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))

Proof of Theorem negcon1
StepHypRef Expression
1 negcl 8079 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 neg11 8130 . . . 4 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵))
31, 2sylan 281 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵))
4 negneg 8129 . . . . 5 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
54adantr 274 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐴 = 𝐴)
65eqeq1d 2166 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵𝐴 = -𝐵))
73, 6bitr3d 189 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵𝐴 = -𝐵))
8 eqcom 2159 . 2 (𝐴 = -𝐵 ↔ -𝐵 = 𝐴)
97, 8bitrdi 195 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  cc 7732  -cneg 8051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-setind 4498  ax-resscn 7826  ax-1cn 7827  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-addcom 7834  ax-addass 7836  ax-distr 7838  ax-i2m1 7839  ax-0id 7842  ax-rnegex 7843  ax-cnre 7845
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-iota 5137  df-fun 5174  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-sub 8052  df-neg 8053
This theorem is referenced by:  negcon2  8132  negcon1i  8161  negcon1d  8184  elznn0  9187
  Copyright terms: Public domain W3C validator