ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcon1 GIF version

Theorem negcon1 8223
Description: Negative contraposition law. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
negcon1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))

Proof of Theorem negcon1
StepHypRef Expression
1 negcl 8171 . . . 4 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 neg11 8222 . . . 4 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵))
31, 2sylan 283 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵 ↔ -𝐴 = 𝐵))
4 negneg 8221 . . . . 5 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
54adantr 276 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → --𝐴 = 𝐴)
65eqeq1d 2196 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (--𝐴 = -𝐵𝐴 = -𝐵))
73, 6bitr3d 190 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵𝐴 = -𝐵))
8 eqcom 2189 . 2 (𝐴 = -𝐵 ↔ -𝐵 = 𝐴)
97, 8bitrdi 196 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wcel 2158  cc 7823  -cneg 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-setind 4548  ax-resscn 7917  ax-1cn 7918  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-sub 8144  df-neg 8145
This theorem is referenced by:  negcon2  8224  negcon1i  8253  negcon1d  8276  elznn0  9282  qsqeqor  10645
  Copyright terms: Public domain W3C validator