![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ceilqval | GIF version |
Description: The value of the ceiling function. (Contributed by Jim Kingdon, 10-Oct-2021.) |
Ref | Expression |
---|---|
ceilqval | ⊢ (𝐴 ∈ ℚ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qre 9625 | . 2 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
2 | qnegcl 9636 | . . 3 ⊢ (𝐴 ∈ ℚ → -𝐴 ∈ ℚ) | |
3 | flqcl 10273 | . . . 4 ⊢ (-𝐴 ∈ ℚ → (⌊‘-𝐴) ∈ ℤ) | |
4 | 3 | znegcld 9377 | . . 3 ⊢ (-𝐴 ∈ ℚ → -(⌊‘-𝐴) ∈ ℤ) |
5 | 2, 4 | syl 14 | . 2 ⊢ (𝐴 ∈ ℚ → -(⌊‘-𝐴) ∈ ℤ) |
6 | negeq 8150 | . . . . 5 ⊢ (𝑥 = 𝐴 → -𝑥 = -𝐴) | |
7 | 6 | fveq2d 5520 | . . . 4 ⊢ (𝑥 = 𝐴 → (⌊‘-𝑥) = (⌊‘-𝐴)) |
8 | 7 | negeqd 8152 | . . 3 ⊢ (𝑥 = 𝐴 → -(⌊‘-𝑥) = -(⌊‘-𝐴)) |
9 | df-ceil 10271 | . . 3 ⊢ ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) | |
10 | 8, 9 | fvmptg 5593 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ -(⌊‘-𝐴) ∈ ℤ) → (⌈‘𝐴) = -(⌊‘-𝐴)) |
11 | 1, 5, 10 | syl2anc 411 | 1 ⊢ (𝐴 ∈ ℚ → (⌈‘𝐴) = -(⌊‘-𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ‘cfv 5217 ℝcr 7810 -cneg 8129 ℤcz 9253 ℚcq 9619 ⌊cfl 10268 ⌈cceil 10269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-po 4297 df-iso 4298 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-n0 9177 df-z 9254 df-q 9620 df-rp 9654 df-fl 10270 df-ceil 10271 |
This theorem is referenced by: ceilqcl 10308 ceilqge 10310 ceilqm1lt 10312 ceilqle 10314 ceilid 10315 ex-ceil 14481 |
Copyright terms: Public domain | W3C validator |