ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negfcncf GIF version

Theorem negfcncf 13383
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
negfcncf.1 𝐺 = (𝑥𝐴 ↦ -(𝐹𝑥))
Assertion
Ref Expression
negfcncf (𝐹 ∈ (𝐴cn→ℂ) → 𝐺 ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem negfcncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncff 13358 . . . . 5 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
21ffvelrnda 5631 . . . 4 ((𝐹 ∈ (𝐴cn→ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
31feqmptd 5549 . . . 4 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
4 eqidd 2171 . . . 4 (𝐹 ∈ (𝐴cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦))
5 negeq 8112 . . . 4 (𝑦 = (𝐹𝑥) → -𝑦 = -(𝐹𝑥))
62, 3, 4, 5fmptco 5662 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = (𝑥𝐴 ↦ -(𝐹𝑥)))
7 negfcncf.1 . . 3 𝐺 = (𝑥𝐴 ↦ -(𝐹𝑥))
86, 7eqtr4di 2221 . 2 (𝐹 ∈ (𝐴cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = 𝐺)
9 id 19 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹 ∈ (𝐴cn→ℂ))
10 ssid 3167 . . . 4 ℂ ⊆ ℂ
11 eqid 2170 . . . . 5 (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦)
1211negcncf 13382 . . . 4 (ℂ ⊆ ℂ → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ))
1310, 12mp1i 10 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ))
149, 13cncfco 13372 . 2 (𝐹 ∈ (𝐴cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) ∈ (𝐴cn→ℂ))
158, 14eqeltrrd 2248 1 (𝐹 ∈ (𝐴cn→ℂ) → 𝐺 ∈ (𝐴cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  wss 3121  cmpt 4050  ccom 4615  cfv 5198  (class class class)co 5853  cc 7772  -cneg 8091  cnccncf 13351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-map 6628  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-2 8937  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-cncf 13352
This theorem is referenced by:  ivthdec  13416
  Copyright terms: Public domain W3C validator