ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negfcncf GIF version

Theorem negfcncf 14785
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypothesis
Ref Expression
negfcncf.1 𝐺 = (𝑥𝐴 ↦ -(𝐹𝑥))
Assertion
Ref Expression
negfcncf (𝐹 ∈ (𝐴cn→ℂ) → 𝐺 ∈ (𝐴cn→ℂ))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem negfcncf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cncff 14756 . . . . 5 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹:𝐴⟶ℂ)
21ffvelcdmda 5694 . . . 4 ((𝐹 ∈ (𝐴cn→ℂ) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
31feqmptd 5611 . . . 4 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
4 eqidd 2194 . . . 4 (𝐹 ∈ (𝐴cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦))
5 negeq 8214 . . . 4 (𝑦 = (𝐹𝑥) → -𝑦 = -(𝐹𝑥))
62, 3, 4, 5fmptco 5725 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = (𝑥𝐴 ↦ -(𝐹𝑥)))
7 negfcncf.1 . . 3 𝐺 = (𝑥𝐴 ↦ -(𝐹𝑥))
86, 7eqtr4di 2244 . 2 (𝐹 ∈ (𝐴cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = 𝐺)
9 id 19 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → 𝐹 ∈ (𝐴cn→ℂ))
10 ssid 3200 . . . 4 ℂ ⊆ ℂ
11 eqid 2193 . . . . 5 (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦)
1211negcncf 14784 . . . 4 (ℂ ⊆ ℂ → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ))
1310, 12mp1i 10 . . 3 (𝐹 ∈ (𝐴cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ))
149, 13cncfco 14770 . 2 (𝐹 ∈ (𝐴cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) ∈ (𝐴cn→ℂ))
158, 14eqeltrrd 2271 1 (𝐹 ∈ (𝐴cn→ℂ) → 𝐺 ∈ (𝐴cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  wss 3154  cmpt 4091  ccom 4664  cfv 5255  (class class class)co 5919  cc 7872  -cneg 8193  cnccncf 14749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-2 9043  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-cncf 14750
This theorem is referenced by:  ivthdec  14823
  Copyright terms: Public domain W3C validator