![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negfcncf | GIF version |
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
negfcncf.1 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) |
Ref | Expression |
---|---|
negfcncf | ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncff 14732 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
2 | 1 | ffvelcdmda 5693 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
3 | 1 | feqmptd 5610 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
4 | eqidd 2194 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦)) | |
5 | negeq 8212 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → -𝑦 = -(𝐹‘𝑥)) | |
6 | 2, 3, 4, 5 | fmptco 5724 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥))) |
7 | negfcncf.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) | |
8 | 6, 7 | eqtr4di 2244 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = 𝐺) |
9 | id 19 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹 ∈ (𝐴–cn→ℂ)) | |
10 | ssid 3199 | . . . 4 ⊢ ℂ ⊆ ℂ | |
11 | eqid 2193 | . . . . 5 ⊢ (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦) | |
12 | 11 | negcncf 14759 | . . . 4 ⊢ (ℂ ⊆ ℂ → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ)) |
13 | 10, 12 | mp1i 10 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ)) |
14 | 9, 13 | cncfco 14746 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
15 | 8, 14 | eqeltrrd 2271 | 1 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ⊆ wss 3153 ↦ cmpt 4090 ∘ ccom 4663 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 -cneg 8191 –cn→ccncf 14725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-map 6704 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-2 9041 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-cncf 14726 |
This theorem is referenced by: ivthdec 14798 |
Copyright terms: Public domain | W3C validator |