| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negfcncf | GIF version | ||
| Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| negfcncf.1 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) |
| Ref | Expression |
|---|---|
| negfcncf | ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncff 15245 | . . . . 5 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
| 2 | 1 | ffvelcdmda 5769 | . . . 4 ⊢ ((𝐹 ∈ (𝐴–cn→ℂ) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 3 | 1 | feqmptd 5686 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 4 | eqidd 2230 | . . . 4 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦)) | |
| 5 | negeq 8335 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → -𝑦 = -(𝐹‘𝑥)) | |
| 6 | 2, 3, 4, 5 | fmptco 5800 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥))) |
| 7 | negfcncf.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) | |
| 8 | 6, 7 | eqtr4di 2280 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) = 𝐺) |
| 9 | id 19 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹 ∈ (𝐴–cn→ℂ)) | |
| 10 | ssid 3244 | . . . 4 ⊢ ℂ ⊆ ℂ | |
| 11 | eqid 2229 | . . . . 5 ⊢ (𝑦 ∈ ℂ ↦ -𝑦) = (𝑦 ∈ ℂ ↦ -𝑦) | |
| 12 | 11 | negcncf 15273 | . . . 4 ⊢ (ℂ ⊆ ℂ → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ)) |
| 13 | 10, 12 | mp1i 10 | . . 3 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → (𝑦 ∈ ℂ ↦ -𝑦) ∈ (ℂ–cn→ℂ)) |
| 14 | 9, 13 | cncfco 15259 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → ((𝑦 ∈ ℂ ↦ -𝑦) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 15 | 8, 14 | eqeltrrd 2307 | 1 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ↦ cmpt 4144 ∘ ccom 4722 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 -cneg 8314 –cn→ccncf 15238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-map 6795 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-2 9165 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-cncf 15239 |
| This theorem is referenced by: ivthdec 15312 |
| Copyright terms: Public domain | W3C validator |