![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negfcncf | GIF version |
Description: The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
negfcncf.1 | β’ πΊ = (π₯ β π΄ β¦ -(πΉβπ₯)) |
Ref | Expression |
---|---|
negfcncf | β’ (πΉ β (π΄βcnββ) β πΊ β (π΄βcnββ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncff 14067 | . . . . 5 β’ (πΉ β (π΄βcnββ) β πΉ:π΄βΆβ) | |
2 | 1 | ffvelcdmda 5652 | . . . 4 β’ ((πΉ β (π΄βcnββ) β§ π₯ β π΄) β (πΉβπ₯) β β) |
3 | 1 | feqmptd 5570 | . . . 4 β’ (πΉ β (π΄βcnββ) β πΉ = (π₯ β π΄ β¦ (πΉβπ₯))) |
4 | eqidd 2178 | . . . 4 β’ (πΉ β (π΄βcnββ) β (π¦ β β β¦ -π¦) = (π¦ β β β¦ -π¦)) | |
5 | negeq 8150 | . . . 4 β’ (π¦ = (πΉβπ₯) β -π¦ = -(πΉβπ₯)) | |
6 | 2, 3, 4, 5 | fmptco 5683 | . . 3 β’ (πΉ β (π΄βcnββ) β ((π¦ β β β¦ -π¦) β πΉ) = (π₯ β π΄ β¦ -(πΉβπ₯))) |
7 | negfcncf.1 | . . 3 β’ πΊ = (π₯ β π΄ β¦ -(πΉβπ₯)) | |
8 | 6, 7 | eqtr4di 2228 | . 2 β’ (πΉ β (π΄βcnββ) β ((π¦ β β β¦ -π¦) β πΉ) = πΊ) |
9 | id 19 | . . 3 β’ (πΉ β (π΄βcnββ) β πΉ β (π΄βcnββ)) | |
10 | ssid 3176 | . . . 4 β’ β β β | |
11 | eqid 2177 | . . . . 5 β’ (π¦ β β β¦ -π¦) = (π¦ β β β¦ -π¦) | |
12 | 11 | negcncf 14091 | . . . 4 β’ (β β β β (π¦ β β β¦ -π¦) β (ββcnββ)) |
13 | 10, 12 | mp1i 10 | . . 3 β’ (πΉ β (π΄βcnββ) β (π¦ β β β¦ -π¦) β (ββcnββ)) |
14 | 9, 13 | cncfco 14081 | . 2 β’ (πΉ β (π΄βcnββ) β ((π¦ β β β¦ -π¦) β πΉ) β (π΄βcnββ)) |
15 | 8, 14 | eqeltrrd 2255 | 1 β’ (πΉ β (π΄βcnββ) β πΊ β (π΄βcnββ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 β wss 3130 β¦ cmpt 4065 β ccom 4631 βcfv 5217 (class class class)co 5875 βcc 7809 -cneg 8129 βcnβccncf 14060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-po 4297 df-iso 4298 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-map 6650 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-2 8978 df-cj 10851 df-re 10852 df-im 10853 df-rsqrt 11007 df-abs 11008 df-cncf 14061 |
This theorem is referenced by: ivthdec 14125 |
Copyright terms: Public domain | W3C validator |