ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omfnex GIF version

Theorem omfnex 6547
Description: The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
omfnex (𝐴𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem omfnex
StepHypRef Expression
1 vex 2776 . . . 4 𝑥 ∈ V
2 oaexg 6546 . . . 4 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥 +o 𝐴) ∈ V)
31, 2mpan 424 . . 3 (𝐴𝑉 → (𝑥 +o 𝐴) ∈ V)
43ralrimivw 2581 . 2 (𝐴𝑉 → ∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V)
5 eqid 2206 . . 3 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
65fnmpt 5411 . 2 (∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
74, 6syl 14 1 (𝐴𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wral 2485  Vcvv 2773  cmpt 4112   Fn wfn 5274  (class class class)co 5956   +o coa 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-suc 4425  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-oadd 6518
This theorem is referenced by:  fnom  6548  omexg  6549  omv  6553  omv2  6563
  Copyright terms: Public domain W3C validator