ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omfnex GIF version

Theorem omfnex 6507
Description: The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
omfnex (𝐴𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem omfnex
StepHypRef Expression
1 vex 2766 . . . 4 𝑥 ∈ V
2 oaexg 6506 . . . 4 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥 +o 𝐴) ∈ V)
31, 2mpan 424 . . 3 (𝐴𝑉 → (𝑥 +o 𝐴) ∈ V)
43ralrimivw 2571 . 2 (𝐴𝑉 → ∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V)
5 eqid 2196 . . 3 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
65fnmpt 5384 . 2 (∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
74, 6syl 14 1 (𝐴𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wral 2475  Vcvv 2763  cmpt 4094   Fn wfn 5253  (class class class)co 5922   +o coa 6471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478
This theorem is referenced by:  fnom  6508  omexg  6509  omv  6513  omv2  6523
  Copyright terms: Public domain W3C validator