| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omfnex | GIF version | ||
| Description: The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| omfnex | ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | oaexg 6546 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 +o 𝐴) ∈ V) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 +o 𝐴) ∈ V) |
| 4 | 3 | ralrimivw 2581 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V) |
| 5 | eqid 2206 | . . 3 ⊢ (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) | |
| 6 | 5 | fnmpt 5411 | . 2 ⊢ (∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) |
| 7 | 4, 6 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ↦ cmpt 4112 Fn wfn 5274 (class class class)co 5956 +o coa 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-iord 4420 df-on 4422 df-suc 4425 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-oadd 6518 |
| This theorem is referenced by: fnom 6548 omexg 6549 omv 6553 omv2 6563 |
| Copyright terms: Public domain | W3C validator |