Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omfnex | GIF version |
Description: The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.) |
Ref | Expression |
---|---|
omfnex | ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2715 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | oaexg 6395 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 +o 𝐴) ∈ V) | |
3 | 1, 2 | mpan 421 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 +o 𝐴) ∈ V) |
4 | 3 | ralrimivw 2531 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V) |
5 | eqid 2157 | . . 3 ⊢ (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) | |
6 | 5 | fnmpt 5296 | . 2 ⊢ (∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) |
7 | 4, 6 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 ∀wral 2435 Vcvv 2712 ↦ cmpt 4025 Fn wfn 5165 (class class class)co 5824 +o coa 6360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-irdg 6317 df-oadd 6367 |
This theorem is referenced by: fnom 6397 omexg 6398 omv 6402 omv2 6412 |
Copyright terms: Public domain | W3C validator |