ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omfnex GIF version

Theorem omfnex 6353
Description: The characteristic function for ordinal multiplication is defined everywhere. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
omfnex (𝐴𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem omfnex
StepHypRef Expression
1 vex 2692 . . . 4 𝑥 ∈ V
2 oaexg 6352 . . . 4 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥 +o 𝐴) ∈ V)
31, 2mpan 421 . . 3 (𝐴𝑉 → (𝑥 +o 𝐴) ∈ V)
43ralrimivw 2509 . 2 (𝐴𝑉 → ∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V)
5 eqid 2140 . . 3 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
65fnmpt 5257 . 2 (∀𝑥 ∈ V (𝑥 +o 𝐴) ∈ V → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
74, 6syl 14 1 (𝐴𝑉 → (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) Fn V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1481  wral 2417  Vcvv 2689  cmpt 3997   Fn wfn 5126  (class class class)co 5782   +o coa 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325
This theorem is referenced by:  fnom  6354  omexg  6355  omv  6359  omv2  6369
  Copyright terms: Public domain W3C validator