ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemloc GIF version

Theorem recexprlemloc 7818
Description: 𝐵 is located. Lemma for recexpr 7825. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemloc (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemloc
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7662 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prnmaxl 7675 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
31, 2sylan 283 . . . . . . . 8 ((𝐴P ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
43adantlr 477 . . . . . . 7 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
5 simprr 531 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑟) <Q 𝑢)
6 elprnql 7668 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
71, 6sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑢 ∈ (1st𝐴)) → 𝑢Q)
87ad2ant2r 509 . . . . . . . . . . . 12 (((𝐴P𝑞 <Q 𝑟) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢Q)
98adantlr 477 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢Q)
10 recrecnq 7581 . . . . . . . . . . 11 (𝑢Q → (*Q‘(*Q𝑢)) = 𝑢)
119, 10syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q‘(*Q𝑢)) = 𝑢)
125, 11breqtrrd 4111 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑟) <Q (*Q‘(*Q𝑢)))
13 recclnq 7579 . . . . . . . . . . 11 (𝑢Q → (*Q𝑢) ∈ Q)
149, 13syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑢) ∈ Q)
15 ltrelnq 7552 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
1615brel 4771 . . . . . . . . . . . . 13 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
1716adantl 277 . . . . . . . . . . . 12 ((𝐴P𝑞 <Q 𝑟) → (𝑞Q𝑟Q))
1817ad2antrr 488 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (𝑞Q𝑟Q))
1918simprd 114 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑟Q)
20 ltrnqg 7607 . . . . . . . . . 10 (((*Q𝑢) ∈ Q𝑟Q) → ((*Q𝑢) <Q 𝑟 ↔ (*Q𝑟) <Q (*Q‘(*Q𝑢))))
2114, 19, 20syl2anc 411 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → ((*Q𝑢) <Q 𝑟 ↔ (*Q𝑟) <Q (*Q‘(*Q𝑢))))
2212, 21mpbird 167 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑢) <Q 𝑟)
23 simprl 529 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢 ∈ (1st𝐴))
2411, 23eqeltrd 2306 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q‘(*Q𝑢)) ∈ (1st𝐴))
25 breq1 4086 . . . . . . . . . . . 12 (𝑦 = (*Q𝑢) → (𝑦 <Q 𝑟 ↔ (*Q𝑢) <Q 𝑟))
26 fveq2 5627 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑢) → (*Q𝑦) = (*Q‘(*Q𝑢)))
2726eleq1d 2298 . . . . . . . . . . . 12 (𝑦 = (*Q𝑢) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘(*Q𝑢)) ∈ (1st𝐴)))
2825, 27anbi12d 473 . . . . . . . . . . 11 (𝑦 = (*Q𝑢) → ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴))))
2928spcegv 2891 . . . . . . . . . 10 ((*Q𝑢) ∈ Q → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
30 recexpr.1 . . . . . . . . . . 11 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
3130recexprlemelu 7810 . . . . . . . . . 10 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
3229, 31imbitrrdi 162 . . . . . . . . 9 ((*Q𝑢) ∈ Q → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
3314, 32syl 14 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
3422, 24, 33mp2and 433 . . . . . . 7 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑟 ∈ (2nd𝐵))
354, 34rexlimddv 2653 . . . . . 6 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵))
3635olcd 739 . . . . 5 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
37 prnminu 7676 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
381, 37sylan 283 . . . . . . . 8 ((𝐴P ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
3938adantlr 477 . . . . . . 7 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
40 elprnqu 7669 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (2nd𝐴)) → 𝑣Q)
411, 40sylan 283 . . . . . . . . . . . . 13 ((𝐴P𝑣 ∈ (2nd𝐴)) → 𝑣Q)
4241adantlr 477 . . . . . . . . . . . 12 (((𝐴P𝑞 <Q 𝑟) ∧ 𝑣 ∈ (2nd𝐴)) → 𝑣Q)
4342ad2ant2r 509 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣Q)
44 recrecnq 7581 . . . . . . . . . . 11 (𝑣Q → (*Q‘(*Q𝑣)) = 𝑣)
4543, 44syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) = 𝑣)
46 simprr 531 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣 <Q (*Q𝑞))
4745, 46eqbrtrd 4105 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) <Q (*Q𝑞))
4817ad2antrr 488 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (𝑞Q𝑟Q))
4948simpld 112 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞Q)
50 recclnq 7579 . . . . . . . . . . 11 (𝑣Q → (*Q𝑣) ∈ Q)
5143, 50syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q𝑣) ∈ Q)
52 ltrnqg 7607 . . . . . . . . . 10 ((𝑞Q ∧ (*Q𝑣) ∈ Q) → (𝑞 <Q (*Q𝑣) ↔ (*Q‘(*Q𝑣)) <Q (*Q𝑞)))
5349, 51, 52syl2anc 411 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (𝑞 <Q (*Q𝑣) ↔ (*Q‘(*Q𝑣)) <Q (*Q𝑞)))
5447, 53mpbird 167 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞 <Q (*Q𝑣))
55 simprl 529 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣 ∈ (2nd𝐴))
5645, 55eqeltrd 2306 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) ∈ (2nd𝐴))
57 breq2 4087 . . . . . . . . . . . 12 (𝑦 = (*Q𝑣) → (𝑞 <Q 𝑦𝑞 <Q (*Q𝑣)))
58 fveq2 5627 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑣) → (*Q𝑦) = (*Q‘(*Q𝑣)))
5958eleq1d 2298 . . . . . . . . . . . 12 (𝑦 = (*Q𝑣) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)))
6057, 59anbi12d 473 . . . . . . . . . . 11 (𝑦 = (*Q𝑣) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴))))
6160spcegv 2891 . . . . . . . . . 10 ((*Q𝑣) ∈ Q → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
6230recexprlemell 7809 . . . . . . . . . 10 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
6361, 62imbitrrdi 162 . . . . . . . . 9 ((*Q𝑣) ∈ Q → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
6451, 63syl 14 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
6554, 56, 64mp2and 433 . . . . . . 7 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞 ∈ (1st𝐵))
6639, 65rexlimddv 2653 . . . . . 6 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵))
6766orcd 738 . . . . 5 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
68 ltrnqi 7608 . . . . . 6 (𝑞 <Q 𝑟 → (*Q𝑟) <Q (*Q𝑞))
69 prloc 7678 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑟) <Q (*Q𝑞)) → ((*Q𝑟) ∈ (1st𝐴) ∨ (*Q𝑞) ∈ (2nd𝐴)))
701, 68, 69syl2an 289 . . . . 5 ((𝐴P𝑞 <Q 𝑟) → ((*Q𝑟) ∈ (1st𝐴) ∨ (*Q𝑞) ∈ (2nd𝐴)))
7136, 67, 70mpjaodan 803 . . . 4 ((𝐴P𝑞 <Q 𝑟) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
7271ex 115 . . 3 (𝐴P → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
7372ralrimivw 2604 . 2 (𝐴P → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
7473ralrimivw 2604 1 (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509  cop 3669   class class class wbr 4083  cfv 5318  1st c1st 6284  2nd c2nd 6285  Qcnq 7467  *Qcrq 7471   <Q cltq 7472  Pcnp 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-mi 7493  df-lti 7494  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-inp 7653
This theorem is referenced by:  recexprlempr  7819
  Copyright terms: Public domain W3C validator