ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemloc GIF version

Theorem recexprlemloc 7593
Description: 𝐵 is located. Lemma for recexpr 7600. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemloc (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemloc
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7437 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prnmaxl 7450 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
31, 2sylan 281 . . . . . . . 8 ((𝐴P ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
43adantlr 474 . . . . . . 7 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
5 simprr 527 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑟) <Q 𝑢)
6 elprnql 7443 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
71, 6sylan 281 . . . . . . . . . . . . 13 ((𝐴P𝑢 ∈ (1st𝐴)) → 𝑢Q)
87ad2ant2r 506 . . . . . . . . . . . 12 (((𝐴P𝑞 <Q 𝑟) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢Q)
98adantlr 474 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢Q)
10 recrecnq 7356 . . . . . . . . . . 11 (𝑢Q → (*Q‘(*Q𝑢)) = 𝑢)
119, 10syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q‘(*Q𝑢)) = 𝑢)
125, 11breqtrrd 4017 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑟) <Q (*Q‘(*Q𝑢)))
13 recclnq 7354 . . . . . . . . . . 11 (𝑢Q → (*Q𝑢) ∈ Q)
149, 13syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑢) ∈ Q)
15 ltrelnq 7327 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
1615brel 4663 . . . . . . . . . . . . 13 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
1716adantl 275 . . . . . . . . . . . 12 ((𝐴P𝑞 <Q 𝑟) → (𝑞Q𝑟Q))
1817ad2antrr 485 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (𝑞Q𝑟Q))
1918simprd 113 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑟Q)
20 ltrnqg 7382 . . . . . . . . . 10 (((*Q𝑢) ∈ Q𝑟Q) → ((*Q𝑢) <Q 𝑟 ↔ (*Q𝑟) <Q (*Q‘(*Q𝑢))))
2114, 19, 20syl2anc 409 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → ((*Q𝑢) <Q 𝑟 ↔ (*Q𝑟) <Q (*Q‘(*Q𝑢))))
2212, 21mpbird 166 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑢) <Q 𝑟)
23 simprl 526 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢 ∈ (1st𝐴))
2411, 23eqeltrd 2247 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q‘(*Q𝑢)) ∈ (1st𝐴))
25 breq1 3992 . . . . . . . . . . . 12 (𝑦 = (*Q𝑢) → (𝑦 <Q 𝑟 ↔ (*Q𝑢) <Q 𝑟))
26 fveq2 5496 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑢) → (*Q𝑦) = (*Q‘(*Q𝑢)))
2726eleq1d 2239 . . . . . . . . . . . 12 (𝑦 = (*Q𝑢) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘(*Q𝑢)) ∈ (1st𝐴)))
2825, 27anbi12d 470 . . . . . . . . . . 11 (𝑦 = (*Q𝑢) → ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴))))
2928spcegv 2818 . . . . . . . . . 10 ((*Q𝑢) ∈ Q → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
30 recexpr.1 . . . . . . . . . . 11 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
3130recexprlemelu 7585 . . . . . . . . . 10 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
3229, 31syl6ibr 161 . . . . . . . . 9 ((*Q𝑢) ∈ Q → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
3314, 32syl 14 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
3422, 24, 33mp2and 431 . . . . . . 7 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑟 ∈ (2nd𝐵))
354, 34rexlimddv 2592 . . . . . 6 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵))
3635olcd 729 . . . . 5 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
37 prnminu 7451 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
381, 37sylan 281 . . . . . . . 8 ((𝐴P ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
3938adantlr 474 . . . . . . 7 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
40 elprnqu 7444 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (2nd𝐴)) → 𝑣Q)
411, 40sylan 281 . . . . . . . . . . . . 13 ((𝐴P𝑣 ∈ (2nd𝐴)) → 𝑣Q)
4241adantlr 474 . . . . . . . . . . . 12 (((𝐴P𝑞 <Q 𝑟) ∧ 𝑣 ∈ (2nd𝐴)) → 𝑣Q)
4342ad2ant2r 506 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣Q)
44 recrecnq 7356 . . . . . . . . . . 11 (𝑣Q → (*Q‘(*Q𝑣)) = 𝑣)
4543, 44syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) = 𝑣)
46 simprr 527 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣 <Q (*Q𝑞))
4745, 46eqbrtrd 4011 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) <Q (*Q𝑞))
4817ad2antrr 485 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (𝑞Q𝑟Q))
4948simpld 111 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞Q)
50 recclnq 7354 . . . . . . . . . . 11 (𝑣Q → (*Q𝑣) ∈ Q)
5143, 50syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q𝑣) ∈ Q)
52 ltrnqg 7382 . . . . . . . . . 10 ((𝑞Q ∧ (*Q𝑣) ∈ Q) → (𝑞 <Q (*Q𝑣) ↔ (*Q‘(*Q𝑣)) <Q (*Q𝑞)))
5349, 51, 52syl2anc 409 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (𝑞 <Q (*Q𝑣) ↔ (*Q‘(*Q𝑣)) <Q (*Q𝑞)))
5447, 53mpbird 166 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞 <Q (*Q𝑣))
55 simprl 526 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣 ∈ (2nd𝐴))
5645, 55eqeltrd 2247 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) ∈ (2nd𝐴))
57 breq2 3993 . . . . . . . . . . . 12 (𝑦 = (*Q𝑣) → (𝑞 <Q 𝑦𝑞 <Q (*Q𝑣)))
58 fveq2 5496 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑣) → (*Q𝑦) = (*Q‘(*Q𝑣)))
5958eleq1d 2239 . . . . . . . . . . . 12 (𝑦 = (*Q𝑣) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)))
6057, 59anbi12d 470 . . . . . . . . . . 11 (𝑦 = (*Q𝑣) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴))))
6160spcegv 2818 . . . . . . . . . 10 ((*Q𝑣) ∈ Q → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
6230recexprlemell 7584 . . . . . . . . . 10 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
6361, 62syl6ibr 161 . . . . . . . . 9 ((*Q𝑣) ∈ Q → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
6451, 63syl 14 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
6554, 56, 64mp2and 431 . . . . . . 7 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞 ∈ (1st𝐵))
6639, 65rexlimddv 2592 . . . . . 6 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵))
6766orcd 728 . . . . 5 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
68 ltrnqi 7383 . . . . . 6 (𝑞 <Q 𝑟 → (*Q𝑟) <Q (*Q𝑞))
69 prloc 7453 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑟) <Q (*Q𝑞)) → ((*Q𝑟) ∈ (1st𝐴) ∨ (*Q𝑞) ∈ (2nd𝐴)))
701, 68, 69syl2an 287 . . . . 5 ((𝐴P𝑞 <Q 𝑟) → ((*Q𝑟) ∈ (1st𝐴) ∨ (*Q𝑞) ∈ (2nd𝐴)))
7136, 67, 70mpjaodan 793 . . . 4 ((𝐴P𝑞 <Q 𝑟) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
7271ex 114 . . 3 (𝐴P → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
7372ralrimivw 2544 . 2 (𝐴P → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
7473ralrimivw 2544 1 (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wex 1485  wcel 2141  {cab 2156  wral 2448  wrex 2449  cop 3586   class class class wbr 3989  cfv 5198  1st c1st 6117  2nd c2nd 6118  Qcnq 7242  *Qcrq 7246   <Q cltq 7247  Pcnp 7253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-lti 7269  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428
This theorem is referenced by:  recexprlempr  7594
  Copyright terms: Public domain W3C validator