ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemloc GIF version

Theorem recexprlemloc 7572
Description: 𝐵 is located. Lemma for recexpr 7579. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemloc (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
Distinct variable groups:   𝑟,𝑞,𝑥,𝑦,𝐴   𝐵,𝑞,𝑟,𝑥,𝑦

Proof of Theorem recexprlemloc
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7416 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prnmaxl 7429 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
31, 2sylan 281 . . . . . . . 8 ((𝐴P ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
43adantlr 469 . . . . . . 7 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → ∃𝑢 ∈ (1st𝐴)(*Q𝑟) <Q 𝑢)
5 simprr 522 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑟) <Q 𝑢)
6 elprnql 7422 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
71, 6sylan 281 . . . . . . . . . . . . 13 ((𝐴P𝑢 ∈ (1st𝐴)) → 𝑢Q)
87ad2ant2r 501 . . . . . . . . . . . 12 (((𝐴P𝑞 <Q 𝑟) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢Q)
98adantlr 469 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢Q)
10 recrecnq 7335 . . . . . . . . . . 11 (𝑢Q → (*Q‘(*Q𝑢)) = 𝑢)
119, 10syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q‘(*Q𝑢)) = 𝑢)
125, 11breqtrrd 4010 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑟) <Q (*Q‘(*Q𝑢)))
13 recclnq 7333 . . . . . . . . . . 11 (𝑢Q → (*Q𝑢) ∈ Q)
149, 13syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑢) ∈ Q)
15 ltrelnq 7306 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
1615brel 4656 . . . . . . . . . . . . 13 (𝑞 <Q 𝑟 → (𝑞Q𝑟Q))
1716adantl 275 . . . . . . . . . . . 12 ((𝐴P𝑞 <Q 𝑟) → (𝑞Q𝑟Q))
1817ad2antrr 480 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (𝑞Q𝑟Q))
1918simprd 113 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑟Q)
20 ltrnqg 7361 . . . . . . . . . 10 (((*Q𝑢) ∈ Q𝑟Q) → ((*Q𝑢) <Q 𝑟 ↔ (*Q𝑟) <Q (*Q‘(*Q𝑢))))
2114, 19, 20syl2anc 409 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → ((*Q𝑢) <Q 𝑟 ↔ (*Q𝑟) <Q (*Q‘(*Q𝑢))))
2212, 21mpbird 166 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q𝑢) <Q 𝑟)
23 simprl 521 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑢 ∈ (1st𝐴))
2411, 23eqeltrd 2243 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (*Q‘(*Q𝑢)) ∈ (1st𝐴))
25 breq1 3985 . . . . . . . . . . . 12 (𝑦 = (*Q𝑢) → (𝑦 <Q 𝑟 ↔ (*Q𝑢) <Q 𝑟))
26 fveq2 5486 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑢) → (*Q𝑦) = (*Q‘(*Q𝑢)))
2726eleq1d 2235 . . . . . . . . . . . 12 (𝑦 = (*Q𝑢) → ((*Q𝑦) ∈ (1st𝐴) ↔ (*Q‘(*Q𝑢)) ∈ (1st𝐴)))
2825, 27anbi12d 465 . . . . . . . . . . 11 (𝑦 = (*Q𝑢) → ((𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)) ↔ ((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴))))
2928spcegv 2814 . . . . . . . . . 10 ((*Q𝑢) ∈ Q → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴))))
30 recexpr.1 . . . . . . . . . . 11 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
3130recexprlemelu 7564 . . . . . . . . . 10 (𝑟 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑟 ∧ (*Q𝑦) ∈ (1st𝐴)))
3229, 31syl6ibr 161 . . . . . . . . 9 ((*Q𝑢) ∈ Q → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
3314, 32syl 14 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → (((*Q𝑢) <Q 𝑟 ∧ (*Q‘(*Q𝑢)) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵)))
3422, 24, 33mp2and 430 . . . . . . 7 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) ∧ (𝑢 ∈ (1st𝐴) ∧ (*Q𝑟) <Q 𝑢)) → 𝑟 ∈ (2nd𝐵))
354, 34rexlimddv 2588 . . . . . 6 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐵))
3635olcd 724 . . . . 5 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑟) ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
37 prnminu 7430 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
381, 37sylan 281 . . . . . . . 8 ((𝐴P ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
3938adantlr 469 . . . . . . 7 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → ∃𝑣 ∈ (2nd𝐴)𝑣 <Q (*Q𝑞))
40 elprnqu 7423 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (2nd𝐴)) → 𝑣Q)
411, 40sylan 281 . . . . . . . . . . . . 13 ((𝐴P𝑣 ∈ (2nd𝐴)) → 𝑣Q)
4241adantlr 469 . . . . . . . . . . . 12 (((𝐴P𝑞 <Q 𝑟) ∧ 𝑣 ∈ (2nd𝐴)) → 𝑣Q)
4342ad2ant2r 501 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣Q)
44 recrecnq 7335 . . . . . . . . . . 11 (𝑣Q → (*Q‘(*Q𝑣)) = 𝑣)
4543, 44syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) = 𝑣)
46 simprr 522 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣 <Q (*Q𝑞))
4745, 46eqbrtrd 4004 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) <Q (*Q𝑞))
4817ad2antrr 480 . . . . . . . . . . 11 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (𝑞Q𝑟Q))
4948simpld 111 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞Q)
50 recclnq 7333 . . . . . . . . . . 11 (𝑣Q → (*Q𝑣) ∈ Q)
5143, 50syl 14 . . . . . . . . . 10 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q𝑣) ∈ Q)
52 ltrnqg 7361 . . . . . . . . . 10 ((𝑞Q ∧ (*Q𝑣) ∈ Q) → (𝑞 <Q (*Q𝑣) ↔ (*Q‘(*Q𝑣)) <Q (*Q𝑞)))
5349, 51, 52syl2anc 409 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (𝑞 <Q (*Q𝑣) ↔ (*Q‘(*Q𝑣)) <Q (*Q𝑞)))
5447, 53mpbird 166 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞 <Q (*Q𝑣))
55 simprl 521 . . . . . . . . 9 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑣 ∈ (2nd𝐴))
5645, 55eqeltrd 2243 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → (*Q‘(*Q𝑣)) ∈ (2nd𝐴))
57 breq2 3986 . . . . . . . . . . . 12 (𝑦 = (*Q𝑣) → (𝑞 <Q 𝑦𝑞 <Q (*Q𝑣)))
58 fveq2 5486 . . . . . . . . . . . . 13 (𝑦 = (*Q𝑣) → (*Q𝑦) = (*Q‘(*Q𝑣)))
5958eleq1d 2235 . . . . . . . . . . . 12 (𝑦 = (*Q𝑣) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)))
6057, 59anbi12d 465 . . . . . . . . . . 11 (𝑦 = (*Q𝑣) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴))))
6160spcegv 2814 . . . . . . . . . 10 ((*Q𝑣) ∈ Q → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
6230recexprlemell 7563 . . . . . . . . . 10 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
6361, 62syl6ibr 161 . . . . . . . . 9 ((*Q𝑣) ∈ Q → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
6451, 63syl 14 . . . . . . . 8 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → ((𝑞 <Q (*Q𝑣) ∧ (*Q‘(*Q𝑣)) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵)))
6554, 56, 64mp2and 430 . . . . . . 7 ((((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) ∧ (𝑣 ∈ (2nd𝐴) ∧ 𝑣 <Q (*Q𝑞))) → 𝑞 ∈ (1st𝐵))
6639, 65rexlimddv 2588 . . . . . 6 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → 𝑞 ∈ (1st𝐵))
6766orcd 723 . . . . 5 (((𝐴P𝑞 <Q 𝑟) ∧ (*Q𝑞) ∈ (2nd𝐴)) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
68 ltrnqi 7362 . . . . . 6 (𝑞 <Q 𝑟 → (*Q𝑟) <Q (*Q𝑞))
69 prloc 7432 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑟) <Q (*Q𝑞)) → ((*Q𝑟) ∈ (1st𝐴) ∨ (*Q𝑞) ∈ (2nd𝐴)))
701, 68, 69syl2an 287 . . . . 5 ((𝐴P𝑞 <Q 𝑟) → ((*Q𝑟) ∈ (1st𝐴) ∨ (*Q𝑞) ∈ (2nd𝐴)))
7136, 67, 70mpjaodan 788 . . . 4 ((𝐴P𝑞 <Q 𝑟) → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵)))
7271ex 114 . . 3 (𝐴P → (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
7372ralrimivw 2540 . 2 (𝐴P → ∀𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
7473ralrimivw 2540 1 (𝐴P → ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞 ∈ (1st𝐵) ∨ 𝑟 ∈ (2nd𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wral 2444  wrex 2445  cop 3579   class class class wbr 3982  cfv 5188  1st c1st 6106  2nd c2nd 6107  Qcnq 7221  *Qcrq 7225   <Q cltq 7226  Pcnp 7232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407
This theorem is referenced by:  recexprlempr  7573
  Copyright terms: Public domain W3C validator