Step | Hyp | Ref
| Expression |
1 | | prop 7437 |
. . . . . . . . 9
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
2 | | prnmaxl 7450 |
. . . . . . . . 9
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) → ∃𝑢 ∈ (1st
‘𝐴)(*Q‘𝑟) <Q
𝑢) |
3 | 1, 2 | sylan 281 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) → ∃𝑢 ∈ (1st
‘𝐴)(*Q‘𝑟) <Q
𝑢) |
4 | 3 | adantlr 474 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) → ∃𝑢 ∈ (1st
‘𝐴)(*Q‘𝑟) <Q
𝑢) |
5 | | simprr 527 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
(*Q‘𝑟) <Q 𝑢) |
6 | | elprnql 7443 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) |
7 | 1, 6 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑢 ∈ (1st
‘𝐴)) → 𝑢 ∈
Q) |
8 | 7 | ad2ant2r 506 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) → 𝑢 ∈ Q) |
9 | 8 | adantlr 474 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) → 𝑢 ∈ Q) |
10 | | recrecnq 7356 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ Q →
(*Q‘(*Q‘𝑢)) = 𝑢) |
11 | 9, 10 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
(*Q‘(*Q‘𝑢)) = 𝑢) |
12 | 5, 11 | breqtrrd 4017 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
(*Q‘𝑟) <Q
(*Q‘(*Q‘𝑢))) |
13 | | recclnq 7354 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ Q →
(*Q‘𝑢) ∈ Q) |
14 | 9, 13 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
(*Q‘𝑢) ∈ Q) |
15 | | ltrelnq 7327 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
16 | 15 | brel 4663 |
. . . . . . . . . . . . 13
⊢ (𝑞 <Q
𝑟 → (𝑞 ∈ Q ∧
𝑟 ∈
Q)) |
17 | 16 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
𝑞
<Q 𝑟) → (𝑞 ∈ Q ∧ 𝑟 ∈
Q)) |
18 | 17 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) → (𝑞 ∈ Q ∧ 𝑟 ∈
Q)) |
19 | 18 | simprd 113 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) → 𝑟 ∈ Q) |
20 | | ltrnqg 7382 |
. . . . . . . . . 10
⊢
(((*Q‘𝑢) ∈ Q ∧ 𝑟 ∈ Q) →
((*Q‘𝑢) <Q 𝑟 ↔
(*Q‘𝑟) <Q
(*Q‘(*Q‘𝑢)))) |
21 | 14, 19, 20 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
((*Q‘𝑢) <Q 𝑟 ↔
(*Q‘𝑟) <Q
(*Q‘(*Q‘𝑢)))) |
22 | 12, 21 | mpbird 166 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
(*Q‘𝑢) <Q 𝑟) |
23 | | simprl 526 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) → 𝑢 ∈ (1st ‘𝐴)) |
24 | 11, 23 | eqeltrd 2247 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
(*Q‘(*Q‘𝑢)) ∈ (1st
‘𝐴)) |
25 | | breq1 3992 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑢) → (𝑦 <Q 𝑟 ↔
(*Q‘𝑢) <Q 𝑟)) |
26 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑢) →
(*Q‘𝑦) =
(*Q‘(*Q‘𝑢))) |
27 | 26 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑢) →
((*Q‘𝑦) ∈ (1st ‘𝐴) ↔
(*Q‘(*Q‘𝑢)) ∈ (1st
‘𝐴))) |
28 | 25, 27 | anbi12d 470 |
. . . . . . . . . . 11
⊢ (𝑦 =
(*Q‘𝑢) → ((𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)) ↔
((*Q‘𝑢) <Q 𝑟 ∧
(*Q‘(*Q‘𝑢)) ∈ (1st
‘𝐴)))) |
29 | 28 | spcegv 2818 |
. . . . . . . . . 10
⊢
((*Q‘𝑢) ∈ Q →
(((*Q‘𝑢) <Q 𝑟 ∧
(*Q‘(*Q‘𝑢)) ∈ (1st
‘𝐴)) →
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴)))) |
30 | | recexpr.1 |
. . . . . . . . . . 11
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
31 | 30 | recexprlemelu 7585 |
. . . . . . . . . 10
⊢ (𝑟 ∈ (2nd
‘𝐵) ↔
∃𝑦(𝑦 <Q 𝑟 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))) |
32 | 29, 31 | syl6ibr 161 |
. . . . . . . . 9
⊢
((*Q‘𝑢) ∈ Q →
(((*Q‘𝑢) <Q 𝑟 ∧
(*Q‘(*Q‘𝑢)) ∈ (1st
‘𝐴)) → 𝑟 ∈ (2nd
‘𝐵))) |
33 | 14, 32 | syl 14 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) →
(((*Q‘𝑢) <Q 𝑟 ∧
(*Q‘(*Q‘𝑢)) ∈ (1st
‘𝐴)) → 𝑟 ∈ (2nd
‘𝐵))) |
34 | 22, 24, 33 | mp2and 431 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) ∧ (𝑢 ∈ (1st ‘𝐴) ∧
(*Q‘𝑟) <Q 𝑢)) → 𝑟 ∈ (2nd ‘𝐵)) |
35 | 4, 34 | rexlimddv 2592 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) → 𝑟 ∈ (2nd ‘𝐵)) |
36 | 35 | olcd 729 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑟) ∈ (1st ‘𝐴)) → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵))) |
37 | | prnminu 7451 |
. . . . . . . . 9
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) → ∃𝑣 ∈ (2nd
‘𝐴)𝑣 <Q
(*Q‘𝑞)) |
38 | 1, 37 | sylan 281 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) → ∃𝑣 ∈ (2nd
‘𝐴)𝑣 <Q
(*Q‘𝑞)) |
39 | 38 | adantlr 474 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) → ∃𝑣 ∈ (2nd
‘𝐴)𝑣 <Q
(*Q‘𝑞)) |
40 | | elprnqu 7444 |
. . . . . . . . . . . . . 14
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑣 ∈ (2nd
‘𝐴)) → 𝑣 ∈
Q) |
41 | 1, 40 | sylan 281 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ P ∧
𝑣 ∈ (2nd
‘𝐴)) → 𝑣 ∈
Q) |
42 | 41 | adantlr 474 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧ 𝑣 ∈ (2nd ‘𝐴)) → 𝑣 ∈ Q) |
43 | 42 | ad2ant2r 506 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → 𝑣 ∈ Q) |
44 | | recrecnq 7356 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ Q →
(*Q‘(*Q‘𝑣)) = 𝑣) |
45 | 43, 44 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) →
(*Q‘(*Q‘𝑣)) = 𝑣) |
46 | | simprr 527 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → 𝑣 <Q
(*Q‘𝑞)) |
47 | 45, 46 | eqbrtrd 4011 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) →
(*Q‘(*Q‘𝑣))
<Q (*Q‘𝑞)) |
48 | 17 | ad2antrr 485 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → (𝑞 ∈ Q ∧ 𝑟 ∈
Q)) |
49 | 48 | simpld 111 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → 𝑞 ∈ Q) |
50 | | recclnq 7354 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ Q →
(*Q‘𝑣) ∈ Q) |
51 | 43, 50 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) →
(*Q‘𝑣) ∈ Q) |
52 | | ltrnqg 7382 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ Q ∧
(*Q‘𝑣) ∈ Q) → (𝑞 <Q
(*Q‘𝑣) ↔
(*Q‘(*Q‘𝑣))
<Q (*Q‘𝑞))) |
53 | 49, 51, 52 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → (𝑞 <Q
(*Q‘𝑣) ↔
(*Q‘(*Q‘𝑣))
<Q (*Q‘𝑞))) |
54 | 47, 53 | mpbird 166 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → 𝑞 <Q
(*Q‘𝑣)) |
55 | | simprl 526 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → 𝑣 ∈ (2nd ‘𝐴)) |
56 | 45, 55 | eqeltrd 2247 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) →
(*Q‘(*Q‘𝑣)) ∈ (2nd
‘𝐴)) |
57 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑣) → (𝑞 <Q 𝑦 ↔ 𝑞 <Q
(*Q‘𝑣))) |
58 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑦 =
(*Q‘𝑣) →
(*Q‘𝑦) =
(*Q‘(*Q‘𝑣))) |
59 | 58 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑦 =
(*Q‘𝑣) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) ↔
(*Q‘(*Q‘𝑣)) ∈ (2nd
‘𝐴))) |
60 | 57, 59 | anbi12d 470 |
. . . . . . . . . . 11
⊢ (𝑦 =
(*Q‘𝑣) → ((𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) ↔ (𝑞 <Q
(*Q‘𝑣) ∧
(*Q‘(*Q‘𝑣)) ∈ (2nd
‘𝐴)))) |
61 | 60 | spcegv 2818 |
. . . . . . . . . 10
⊢
((*Q‘𝑣) ∈ Q → ((𝑞 <Q
(*Q‘𝑣) ∧
(*Q‘(*Q‘𝑣)) ∈ (2nd
‘𝐴)) →
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)))) |
62 | 30 | recexprlemell 7584 |
. . . . . . . . . 10
⊢ (𝑞 ∈ (1st
‘𝐵) ↔
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |
63 | 61, 62 | syl6ibr 161 |
. . . . . . . . 9
⊢
((*Q‘𝑣) ∈ Q → ((𝑞 <Q
(*Q‘𝑣) ∧
(*Q‘(*Q‘𝑣)) ∈ (2nd
‘𝐴)) → 𝑞 ∈ (1st
‘𝐵))) |
64 | 51, 63 | syl 14 |
. . . . . . . 8
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → ((𝑞 <Q
(*Q‘𝑣) ∧
(*Q‘(*Q‘𝑣)) ∈ (2nd
‘𝐴)) → 𝑞 ∈ (1st
‘𝐵))) |
65 | 54, 56, 64 | mp2and 431 |
. . . . . . 7
⊢ ((((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) ∧ (𝑣 ∈ (2nd ‘𝐴) ∧ 𝑣 <Q
(*Q‘𝑞))) → 𝑞 ∈ (1st ‘𝐵)) |
66 | 39, 65 | rexlimddv 2592 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) → 𝑞 ∈ (1st ‘𝐵)) |
67 | 66 | orcd 728 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝑞
<Q 𝑟) ∧
(*Q‘𝑞) ∈ (2nd ‘𝐴)) → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵))) |
68 | | ltrnqi 7383 |
. . . . . 6
⊢ (𝑞 <Q
𝑟 →
(*Q‘𝑟) <Q
(*Q‘𝑞)) |
69 | | prloc 7453 |
. . . . . 6
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧
(*Q‘𝑟) <Q
(*Q‘𝑞)) →
((*Q‘𝑟) ∈ (1st ‘𝐴) ∨
(*Q‘𝑞) ∈ (2nd ‘𝐴))) |
70 | 1, 68, 69 | syl2an 287 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝑞
<Q 𝑟) →
((*Q‘𝑟) ∈ (1st ‘𝐴) ∨
(*Q‘𝑞) ∈ (2nd ‘𝐴))) |
71 | 36, 67, 70 | mpjaodan 793 |
. . . 4
⊢ ((𝐴 ∈ P ∧
𝑞
<Q 𝑟) → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵))) |
72 | 71 | ex 114 |
. . 3
⊢ (𝐴 ∈ P →
(𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵)))) |
73 | 72 | ralrimivw 2544 |
. 2
⊢ (𝐴 ∈ P →
∀𝑟 ∈
Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵)))) |
74 | 73 | ralrimivw 2544 |
1
⊢ (𝐴 ∈ P →
∀𝑞 ∈
Q ∀𝑟
∈ Q (𝑞
<Q 𝑟 → (𝑞 ∈ (1st ‘𝐵) ∨ 𝑟 ∈ (2nd ‘𝐵)))) |