| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mgpscag | GIF version | ||
| Description: The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.) | 
| Ref | Expression | 
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) | 
| mgpsca.s | ⊢ 𝑆 = (Scalar‘𝑅) | 
| Ref | Expression | 
|---|---|
| mgpscag | ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (Scalar‘𝑀)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mgpsca.s | . 2 ⊢ 𝑆 = (Scalar‘𝑅) | |
| 2 | mulrslid 12809 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12705 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) | 
| 4 | scaslid 12830 | . . . . 5 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 5 | scandxnplusgndx 12832 | . . . . 5 ⊢ (Scalar‘ndx) ≠ (+g‘ndx) | |
| 6 | plusgslid 12790 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ | 
| 8 | 4, 5, 7 | setsslnid 12730 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (Scalar‘𝑅) = (Scalar‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) | 
| 9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) = (Scalar‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) | 
| 10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 11 | eqid 2196 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 10, 11 | mgpvalg 13479 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) | 
| 13 | 12 | fveq2d 5562 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑀) = (Scalar‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) | 
| 14 | 9, 13 | eqtr4d 2232 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) = (Scalar‘𝑀)) | 
| 15 | 1, 14 | eqtrid 2241 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (Scalar‘𝑀)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 〈cop 3625 ‘cfv 5258 (class class class)co 5922 ℕcn 8990 ndxcnx 12675 sSet csts 12676 Slot cslot 12677 +gcplusg 12755 .rcmulr 12756 Scalarcsca 12758 mulGrpcmgp 13476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-ndx 12681 df-slot 12682 df-sets 12685 df-plusg 12768 df-mulr 12769 df-sca 12771 df-mgp 13477 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |