ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpscag GIF version

Theorem mgpscag 13885
Description: The multiplication monoid has the same (if any) scalars as the original ring. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
mgpbas.1 𝑀 = (mulGrp‘𝑅)
mgpsca.s 𝑆 = (Scalar‘𝑅)
Assertion
Ref Expression
mgpscag (𝑅𝑉𝑆 = (Scalar‘𝑀))

Proof of Theorem mgpscag
StepHypRef Expression
1 mgpsca.s . 2 𝑆 = (Scalar‘𝑅)
2 mulrslid 13160 . . . . 5 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
32slotex 13054 . . . 4 (𝑅𝑉 → (.r𝑅) ∈ V)
4 scaslid 13181 . . . . 5 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
5 scandxnplusgndx 13183 . . . . 5 (Scalar‘ndx) ≠ (+g‘ndx)
6 plusgslid 13140 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
76simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
84, 5, 7setsslnid 13079 . . . 4 ((𝑅𝑉 ∧ (.r𝑅) ∈ V) → (Scalar‘𝑅) = (Scalar‘(𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)))
93, 8mpdan 421 . . 3 (𝑅𝑉 → (Scalar‘𝑅) = (Scalar‘(𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)))
10 mgpbas.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
11 eqid 2229 . . . . 5 (.r𝑅) = (.r𝑅)
1210, 11mgpvalg 13881 . . . 4 (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
1312fveq2d 5630 . . 3 (𝑅𝑉 → (Scalar‘𝑀) = (Scalar‘(𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)))
149, 13eqtr4d 2265 . 2 (𝑅𝑉 → (Scalar‘𝑅) = (Scalar‘𝑀))
151, 14eqtrid 2274 1 (𝑅𝑉𝑆 = (Scalar‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  cop 3669  cfv 5317  (class class class)co 6000  cn 9106  ndxcnx 13024   sSet csts 13025  Slot cslot 13026  +gcplusg 13105  .rcmulr 13106  Scalarcsca 13108  mulGrpcmgp 13878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-ndx 13030  df-slot 13031  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sca 13121  df-mgp 13879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator