![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressscag | GIF version |
Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
resssca.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
resssca.2 | ⊢ 𝐹 = (Scalar‘𝐺) |
Ref | Expression |
---|---|
ressscag | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resssca.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | resssca.2 | . 2 ⊢ 𝐹 = (Scalar‘𝐺) | |
3 | scaslid 12667 | . 2 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
4 | scandxnbasendx 12668 | . 2 ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | |
5 | simpl 109 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ 𝑋) | |
6 | simpr 110 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
7 | 1, 2, 3, 4, 5, 6 | resseqnbasd 12588 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 (class class class)co 5897 ↾s cress 12516 Scalarcsca 12595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fun 5237 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-iress 12523 df-sca 12608 |
This theorem is referenced by: islss3 13712 |
Copyright terms: Public domain | W3C validator |