![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressscag | GIF version |
Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
resssca.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
resssca.2 | ⊢ 𝐹 = (Scalar‘𝐺) |
Ref | Expression |
---|---|
ressscag | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resssca.1 | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
2 | resssca.2 | . 2 ⊢ 𝐹 = (Scalar‘𝐺) | |
3 | scaslid 12770 | . 2 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
4 | scandxnbasendx 12771 | . 2 ⊢ (Scalar‘ndx) ≠ (Base‘ndx) | |
5 | simpl 109 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ 𝑋) | |
6 | simpr 110 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
7 | 1, 2, 3, 4, 5, 6 | resseqnbasd 12691 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 ↾s cress 12619 Scalarcsca 12698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-sca 12711 |
This theorem is referenced by: islss3 13875 |
Copyright terms: Public domain | W3C validator |