Proof of Theorem srgpcomppsc
| Step | Hyp | Ref
| Expression |
| 1 | | srgpcomp.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ SRing) |
| 2 | | srgpcomppsc.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℕ0) |
| 3 | | srgpcomp.g |
. . . . . . . . 9
⊢ 𝐺 = (mulGrp‘𝑅) |
| 4 | 3 | srgmgp 13600 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 5 | 1, 4 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 6 | | srgpcompp.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 7 | | srgpcomp.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 8 | | srgpcomp.s |
. . . . . . . . . 10
⊢ 𝑆 = (Base‘𝑅) |
| 9 | 3, 8 | mgpbasg 13558 |
. . . . . . . . 9
⊢ (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺)) |
| 10 | 1, 9 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = (Base‘𝐺)) |
| 11 | 7, 10 | eleqtrd 2275 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
| 12 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 13 | | srgpcomp.e |
. . . . . . . 8
⊢ ↑ =
(.g‘𝐺) |
| 14 | 12, 13 | mulgnn0cl 13344 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈
(Base‘𝐺)) →
(𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 15 | 5, 6, 11, 14 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 16 | 15, 10 | eleqtrrd 2276 |
. . . . 5
⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
| 17 | | srgpcomp.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 18 | | srgpcomp.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| 19 | 18, 10 | eleqtrd 2275 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (Base‘𝐺)) |
| 20 | 12, 13 | mulgnn0cl 13344 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0
∧ 𝐵 ∈
(Base‘𝐺)) →
(𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 21 | 5, 17, 19, 20 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 22 | 21, 10 | eleqtrrd 2276 |
. . . . 5
⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
| 23 | | srgpcomppsc.t |
. . . . . . 7
⊢ · =
(.g‘𝑅) |
| 24 | | srgpcomp.m |
. . . . . . 7
⊢ × =
(.r‘𝑅) |
| 25 | 8, 23, 24 | srgmulgass 13621 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) = (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| 26 | 25 | eqcomd 2202 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
| 27 | 1, 2, 16, 22, 26 | syl13anc 1251 |
. . . 4
⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
| 28 | 27 | oveq1d 5940 |
. . 3
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴)) |
| 29 | | srgmnd 13599 |
. . . . . 6
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| 30 | 1, 29 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 31 | 8, 23 | mulgnn0cl 13344 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆) → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
| 32 | 30, 2, 16, 31 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
| 33 | 8, 24 | srgass 13603 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 34 | 1, 32, 22, 7, 33 | syl13anc 1251 |
. . 3
⊢ (𝜑 → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 35 | 28, 34 | eqtrd 2229 |
. 2
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 36 | 8, 24 | srgcl 13602 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
| 37 | 1, 22, 7, 36 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
| 38 | 8, 23, 24 | srgmulgass 13621 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
| 39 | 1, 2, 16, 37, 38 | syl13anc 1251 |
. . 3
⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
| 40 | 8, 24 | srgass 13603 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 41 | 1, 16, 22, 7, 40 | syl13anc 1251 |
. . . . 5
⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 42 | 41 | eqcomd 2202 |
. . . 4
⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) |
| 43 | 42 | oveq2d 5941 |
. . 3
⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
| 44 | 39, 43 | eqtrd 2229 |
. 2
⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
| 45 | | srgpcomp.c |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 46 | 8, 24, 3, 13, 1, 7,
18, 17, 45, 6 | srgpcompp 13623 |
. . 3
⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| 47 | 46 | oveq2d 5941 |
. 2
⊢ (𝜑 → (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
| 48 | 35, 44, 47 | 3eqtrd 2233 |
1
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |