ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomppsc GIF version

Theorem srgpcomppsc 12968
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
srgpcomppsc.t · = (.g𝑅)
srgpcomppsc.c (𝜑𝐶 ∈ ℕ0)
Assertion
Ref Expression
srgpcomppsc (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5 (𝜑𝑅 ∈ SRing)
2 srgpcomppsc.c . . . . 5 (𝜑𝐶 ∈ ℕ0)
3 srgpcomp.g . . . . . . . . 9 𝐺 = (mulGrp‘𝑅)
43srgmgp 12944 . . . . . . . 8 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
51, 4syl 14 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
6 srgpcompp.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 srgpcomp.a . . . . . . . 8 (𝜑𝐴𝑆)
8 srgpcomp.s . . . . . . . . . 10 𝑆 = (Base‘𝑅)
93, 8mgpbasg 12930 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺))
101, 9syl 14 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐺))
117, 10eleqtrd 2254 . . . . . . 7 (𝜑𝐴 ∈ (Base‘𝐺))
12 eqid 2175 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
13 srgpcomp.e . . . . . . . 8 = (.g𝐺)
1412, 13mulgnn0cl 12858 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴 ∈ (Base‘𝐺)) → (𝑁 𝐴) ∈ (Base‘𝐺))
155, 6, 11, 14syl3anc 1238 . . . . . 6 (𝜑 → (𝑁 𝐴) ∈ (Base‘𝐺))
1615, 10eleqtrrd 2255 . . . . 5 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
17 srgpcomp.k . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
18 srgpcomp.b . . . . . . . 8 (𝜑𝐵𝑆)
1918, 10eleqtrd 2254 . . . . . . 7 (𝜑𝐵 ∈ (Base‘𝐺))
2012, 13mulgnn0cl 12858 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → (𝐾 𝐵) ∈ (Base‘𝐺))
215, 17, 19, 20syl3anc 1238 . . . . . 6 (𝜑 → (𝐾 𝐵) ∈ (Base‘𝐺))
2221, 10eleqtrrd 2255 . . . . 5 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
23 srgpcomppsc.t . . . . . . 7 · = (.g𝑅)
24 srgpcomp.m . . . . . . 7 × = (.r𝑅)
258, 23, 24srgmulgass 12965 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) = (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))))
2625eqcomd 2181 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
271, 2, 16, 22, 26syl13anc 1240 . . . 4 (𝜑 → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
2827oveq1d 5880 . . 3 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴))
29 srgmnd 12943 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
301, 29syl 14 . . . . 5 (𝜑𝑅 ∈ Mnd)
318, 23mulgnn0cl 12858 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆) → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
3230, 2, 16, 31syl3anc 1238 . . . 4 (𝜑 → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
338, 24srgass 12947 . . . 4 ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 𝐴)) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
341, 32, 22, 7, 33syl13anc 1240 . . 3 (𝜑 → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
3528, 34eqtrd 2208 . 2 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
368, 24srgcl 12946 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆) → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
371, 22, 7, 36syl3anc 1238 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
388, 23, 24srgmulgass 12965 . . . 4 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ ((𝐾 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
391, 2, 16, 37, 38syl13anc 1240 . . 3 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
408, 24srgass 12947 . . . . . 6 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
411, 16, 22, 7, 40syl13anc 1240 . . . . 5 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
4241eqcomd 2181 . . . 4 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴))
4342oveq2d 5881 . . 3 (𝜑 → (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
4439, 43eqtrd 2208 . 2 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
45 srgpcomp.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
468, 24, 3, 13, 1, 7, 18, 17, 45, 6srgpcompp 12967 . . 3 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
4746oveq2d 5881 . 2 (𝜑 → (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
4835, 44, 473eqtrd 2212 1 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  1c1 7787   + caddc 7789  0cn0 9147  Basecbs 12428  .rcmulr 12493  Mndcmnd 12682  .gcmg 12842  mulGrpcmgp 12925  SRingcsrg 12939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8891  df-2 8949  df-3 8950  df-n0 9148  df-z 9225  df-uz 9500  df-seqfrec 10414  df-ndx 12431  df-slot 12432  df-base 12434  df-sets 12435  df-plusg 12505  df-mulr 12506  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-minusg 12742  df-mulg 12843  df-cmn 12886  df-mgp 12926  df-ur 12936  df-srg 12940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator