ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomppsc GIF version

Theorem srgpcomppsc 13075
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
srgpcomppsc.t · = (.g𝑅)
srgpcomppsc.c (𝜑𝐶 ∈ ℕ0)
Assertion
Ref Expression
srgpcomppsc (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5 (𝜑𝑅 ∈ SRing)
2 srgpcomppsc.c . . . . 5 (𝜑𝐶 ∈ ℕ0)
3 srgpcomp.g . . . . . . . . 9 𝐺 = (mulGrp‘𝑅)
43srgmgp 13051 . . . . . . . 8 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
51, 4syl 14 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
6 srgpcompp.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 srgpcomp.a . . . . . . . 8 (𝜑𝐴𝑆)
8 srgpcomp.s . . . . . . . . . 10 𝑆 = (Base‘𝑅)
93, 8mgpbasg 13036 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺))
101, 9syl 14 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐺))
117, 10eleqtrd 2256 . . . . . . 7 (𝜑𝐴 ∈ (Base‘𝐺))
12 eqid 2177 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
13 srgpcomp.e . . . . . . . 8 = (.g𝐺)
1412, 13mulgnn0cl 12927 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴 ∈ (Base‘𝐺)) → (𝑁 𝐴) ∈ (Base‘𝐺))
155, 6, 11, 14syl3anc 1238 . . . . . 6 (𝜑 → (𝑁 𝐴) ∈ (Base‘𝐺))
1615, 10eleqtrrd 2257 . . . . 5 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
17 srgpcomp.k . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
18 srgpcomp.b . . . . . . . 8 (𝜑𝐵𝑆)
1918, 10eleqtrd 2256 . . . . . . 7 (𝜑𝐵 ∈ (Base‘𝐺))
2012, 13mulgnn0cl 12927 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → (𝐾 𝐵) ∈ (Base‘𝐺))
215, 17, 19, 20syl3anc 1238 . . . . . 6 (𝜑 → (𝐾 𝐵) ∈ (Base‘𝐺))
2221, 10eleqtrrd 2257 . . . . 5 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
23 srgpcomppsc.t . . . . . . 7 · = (.g𝑅)
24 srgpcomp.m . . . . . . 7 × = (.r𝑅)
258, 23, 24srgmulgass 13072 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) = (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))))
2625eqcomd 2183 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
271, 2, 16, 22, 26syl13anc 1240 . . . 4 (𝜑 → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
2827oveq1d 5885 . . 3 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴))
29 srgmnd 13050 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
301, 29syl 14 . . . . 5 (𝜑𝑅 ∈ Mnd)
318, 23mulgnn0cl 12927 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆) → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
3230, 2, 16, 31syl3anc 1238 . . . 4 (𝜑 → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
338, 24srgass 13054 . . . 4 ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 𝐴)) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
341, 32, 22, 7, 33syl13anc 1240 . . 3 (𝜑 → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
3528, 34eqtrd 2210 . 2 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
368, 24srgcl 13053 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆) → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
371, 22, 7, 36syl3anc 1238 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
388, 23, 24srgmulgass 13072 . . . 4 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ ((𝐾 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
391, 2, 16, 37, 38syl13anc 1240 . . 3 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
408, 24srgass 13054 . . . . . 6 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
411, 16, 22, 7, 40syl13anc 1240 . . . . 5 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
4241eqcomd 2183 . . . 4 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴))
4342oveq2d 5886 . . 3 (𝜑 → (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
4439, 43eqtrd 2210 . 2 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
45 srgpcomp.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
468, 24, 3, 13, 1, 7, 18, 17, 45, 6srgpcompp 13074 . . 3 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
4746oveq2d 5886 . 2 (𝜑 → (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
4835, 44, 473eqtrd 2214 1 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  cfv 5213  (class class class)co 5870  1c1 7807   + caddc 7809  0cn0 9170  Basecbs 12452  .rcmulr 12527  Mndcmnd 12747  .gcmg 12911  mulGrpcmgp 13030  SRingcsrg 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-addcom 7906  ax-addass 7908  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-0id 7914  ax-rnegex 7915  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-ltadd 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-id 4291  df-iord 4364  df-on 4366  df-ilim 4367  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-recs 6301  df-frec 6387  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-inn 8914  df-2 8972  df-3 8973  df-n0 9171  df-z 9248  df-uz 9523  df-seqfrec 10439  df-ndx 12455  df-slot 12456  df-base 12458  df-sets 12459  df-plusg 12539  df-mulr 12540  df-0g 12693  df-mgm 12705  df-sgrp 12738  df-mnd 12748  df-minusg 12809  df-mulg 12912  df-cmn 12990  df-mgp 13031  df-ur 13043  df-srg 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator