Proof of Theorem srgpcomppsc
Step | Hyp | Ref
| Expression |
1 | | srgpcomp.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ SRing) |
2 | | srgpcomppsc.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈
ℕ0) |
3 | | srgpcomp.g |
. . . . . . . . 9
⊢ 𝐺 = (mulGrp‘𝑅) |
4 | 3 | srgmgp 12944 |
. . . . . . . 8
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
5 | 1, 4 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | | srgpcompp.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
7 | | srgpcomp.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
8 | | srgpcomp.s |
. . . . . . . . . 10
⊢ 𝑆 = (Base‘𝑅) |
9 | 3, 8 | mgpbasg 12930 |
. . . . . . . . 9
⊢ (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺)) |
10 | 1, 9 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = (Base‘𝐺)) |
11 | 7, 10 | eleqtrd 2254 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
12 | | eqid 2175 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
13 | | srgpcomp.e |
. . . . . . . 8
⊢ ↑ =
(.g‘𝐺) |
14 | 12, 13 | mulgnn0cl 12858 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ 𝐴 ∈
(Base‘𝐺)) →
(𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
15 | 5, 6, 11, 14 | syl3anc 1238 |
. . . . . 6
⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
16 | 15, 10 | eleqtrrd 2255 |
. . . . 5
⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
17 | | srgpcomp.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
18 | | srgpcomp.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
19 | 18, 10 | eleqtrd 2254 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (Base‘𝐺)) |
20 | 12, 13 | mulgnn0cl 12858 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0
∧ 𝐵 ∈
(Base‘𝐺)) →
(𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
21 | 5, 17, 19, 20 | syl3anc 1238 |
. . . . . 6
⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
22 | 21, 10 | eleqtrrd 2255 |
. . . . 5
⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
23 | | srgpcomppsc.t |
. . . . . . 7
⊢ · =
(.g‘𝑅) |
24 | | srgpcomp.m |
. . . . . . 7
⊢ × =
(.r‘𝑅) |
25 | 8, 23, 24 | srgmulgass 12965 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) = (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
26 | 25 | eqcomd 2181 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
27 | 1, 2, 16, 22, 26 | syl13anc 1240 |
. . . 4
⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) = ((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵))) |
28 | 27 | oveq1d 5880 |
. . 3
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴)) |
29 | | srgmnd 12943 |
. . . . . 6
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
30 | 1, 29 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Mnd) |
31 | 8, 23 | mulgnn0cl 12858 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆) → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
32 | 30, 2, 16, 31 | syl3anc 1238 |
. . . 4
⊢ (𝜑 → (𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆) |
33 | 8, 24 | srgass 12947 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 ↑ 𝐴)) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
34 | 1, 32, 22, 7, 33 | syl13anc 1240 |
. . 3
⊢ (𝜑 → (((𝐶 · (𝑁 ↑ 𝐴)) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
35 | 28, 34 | eqtrd 2208 |
. 2
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴))) |
36 | 8, 24 | srgcl 12946 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
37 | 1, 22, 7, 36 | syl3anc 1238 |
. . . 4
⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆) |
38 | 8, 23, 24 | srgmulgass 12965 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0
∧ (𝑁 ↑ 𝐴) ∈ 𝑆 ∧ ((𝐾 ↑ 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
39 | 1, 2, 16, 37, 38 | syl13anc 1240 |
. . 3
⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)))) |
40 | 8, 24 | srgass 12947 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
41 | 1, 16, 22, 7, 40 | syl13anc 1240 |
. . . . 5
⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
42 | 41 | eqcomd 2181 |
. . . 4
⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) |
43 | 42 | oveq2d 5881 |
. . 3
⊢ (𝜑 → (𝐶 · ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
44 | 39, 43 | eqtrd 2208 |
. 2
⊢ (𝜑 → ((𝐶 · (𝑁 ↑ 𝐴)) × ((𝐾 ↑ 𝐵) × 𝐴)) = (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴))) |
45 | | srgpcomp.c |
. . . 4
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
46 | 8, 24, 3, 13, 1, 7,
18, 17, 45, 6 | srgpcompp 12967 |
. . 3
⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
47 | 46 | oveq2d 5881 |
. 2
⊢ (𝜑 → (𝐶 · (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |
48 | 35, 44, 47 | 3eqtrd 2212 |
1
⊢ (𝜑 → ((𝐶 · ((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵)))) |