ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomppsc GIF version

Theorem srgpcomppsc 13921
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
srgpcomppsc.t · = (.g𝑅)
srgpcomppsc.c (𝜑𝐶 ∈ ℕ0)
Assertion
Ref Expression
srgpcomppsc (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5 (𝜑𝑅 ∈ SRing)
2 srgpcomppsc.c . . . . 5 (𝜑𝐶 ∈ ℕ0)
3 srgpcomp.g . . . . . . . . 9 𝐺 = (mulGrp‘𝑅)
43srgmgp 13897 . . . . . . . 8 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
51, 4syl 14 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
6 srgpcompp.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 srgpcomp.a . . . . . . . 8 (𝜑𝐴𝑆)
8 srgpcomp.s . . . . . . . . . 10 𝑆 = (Base‘𝑅)
93, 8mgpbasg 13855 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺))
101, 9syl 14 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐺))
117, 10eleqtrd 2288 . . . . . . 7 (𝜑𝐴 ∈ (Base‘𝐺))
12 eqid 2209 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
13 srgpcomp.e . . . . . . . 8 = (.g𝐺)
1412, 13mulgnn0cl 13641 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴 ∈ (Base‘𝐺)) → (𝑁 𝐴) ∈ (Base‘𝐺))
155, 6, 11, 14syl3anc 1252 . . . . . 6 (𝜑 → (𝑁 𝐴) ∈ (Base‘𝐺))
1615, 10eleqtrrd 2289 . . . . 5 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
17 srgpcomp.k . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
18 srgpcomp.b . . . . . . . 8 (𝜑𝐵𝑆)
1918, 10eleqtrd 2288 . . . . . . 7 (𝜑𝐵 ∈ (Base‘𝐺))
2012, 13mulgnn0cl 13641 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → (𝐾 𝐵) ∈ (Base‘𝐺))
215, 17, 19, 20syl3anc 1252 . . . . . 6 (𝜑 → (𝐾 𝐵) ∈ (Base‘𝐺))
2221, 10eleqtrrd 2289 . . . . 5 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
23 srgpcomppsc.t . . . . . . 7 · = (.g𝑅)
24 srgpcomp.m . . . . . . 7 × = (.r𝑅)
258, 23, 24srgmulgass 13918 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) = (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))))
2625eqcomd 2215 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
271, 2, 16, 22, 26syl13anc 1254 . . . 4 (𝜑 → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
2827oveq1d 5989 . . 3 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴))
29 srgmnd 13896 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
301, 29syl 14 . . . . 5 (𝜑𝑅 ∈ Mnd)
318, 23mulgnn0cl 13641 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆) → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
3230, 2, 16, 31syl3anc 1252 . . . 4 (𝜑 → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
338, 24srgass 13900 . . . 4 ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 𝐴)) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
341, 32, 22, 7, 33syl13anc 1254 . . 3 (𝜑 → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
3528, 34eqtrd 2242 . 2 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
368, 24srgcl 13899 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆) → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
371, 22, 7, 36syl3anc 1252 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
388, 23, 24srgmulgass 13918 . . . 4 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ ((𝐾 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
391, 2, 16, 37, 38syl13anc 1254 . . 3 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
408, 24srgass 13900 . . . . . 6 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
411, 16, 22, 7, 40syl13anc 1254 . . . . 5 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
4241eqcomd 2215 . . . 4 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴))
4342oveq2d 5990 . . 3 (𝜑 → (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
4439, 43eqtrd 2242 . 2 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
45 srgpcomp.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
468, 24, 3, 13, 1, 7, 18, 17, 45, 6srgpcompp 13920 . . 3 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
4746oveq2d 5990 . 2 (𝜑 → (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
4835, 44, 473eqtrd 2246 1 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180  cfv 5294  (class class class)co 5974  1c1 7968   + caddc 7970  0cn0 9337  Basecbs 12998  .rcmulr 13077  Mndcmnd 13415  .gcmg 13622  mulGrpcmgp 13849  SRingcsrg 13892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-3 9138  df-n0 9338  df-z 9415  df-uz 9691  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-minusg 13503  df-mulg 13623  df-cmn 13789  df-mgp 13850  df-ur 13889  df-srg 13893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator