ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomppsc GIF version

Theorem srgpcomppsc 13963
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
srgpcomppsc.t · = (.g𝑅)
srgpcomppsc.c (𝜑𝐶 ∈ ℕ0)
Assertion
Ref Expression
srgpcomppsc (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))

Proof of Theorem srgpcomppsc
StepHypRef Expression
1 srgpcomp.r . . . . 5 (𝜑𝑅 ∈ SRing)
2 srgpcomppsc.c . . . . 5 (𝜑𝐶 ∈ ℕ0)
3 srgpcomp.g . . . . . . . . 9 𝐺 = (mulGrp‘𝑅)
43srgmgp 13939 . . . . . . . 8 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
51, 4syl 14 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
6 srgpcompp.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
7 srgpcomp.a . . . . . . . 8 (𝜑𝐴𝑆)
8 srgpcomp.s . . . . . . . . . 10 𝑆 = (Base‘𝑅)
93, 8mgpbasg 13897 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺))
101, 9syl 14 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐺))
117, 10eleqtrd 2308 . . . . . . 7 (𝜑𝐴 ∈ (Base‘𝐺))
12 eqid 2229 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
13 srgpcomp.e . . . . . . . 8 = (.g𝐺)
1412, 13mulgnn0cl 13683 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴 ∈ (Base‘𝐺)) → (𝑁 𝐴) ∈ (Base‘𝐺))
155, 6, 11, 14syl3anc 1271 . . . . . 6 (𝜑 → (𝑁 𝐴) ∈ (Base‘𝐺))
1615, 10eleqtrrd 2309 . . . . 5 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
17 srgpcomp.k . . . . . . 7 (𝜑𝐾 ∈ ℕ0)
18 srgpcomp.b . . . . . . . 8 (𝜑𝐵𝑆)
1918, 10eleqtrd 2308 . . . . . . 7 (𝜑𝐵 ∈ (Base‘𝐺))
2012, 13mulgnn0cl 13683 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → (𝐾 𝐵) ∈ (Base‘𝐺))
215, 17, 19, 20syl3anc 1271 . . . . . 6 (𝜑 → (𝐾 𝐵) ∈ (Base‘𝐺))
2221, 10eleqtrrd 2309 . . . . 5 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
23 srgpcomppsc.t . . . . . . 7 · = (.g𝑅)
24 srgpcomp.m . . . . . . 7 × = (.r𝑅)
258, 23, 24srgmulgass 13960 . . . . . 6 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) = (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))))
2625eqcomd 2235 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
271, 2, 16, 22, 26syl13anc 1273 . . . 4 (𝜑 → (𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) = ((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)))
2827oveq1d 6022 . . 3 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴))
29 srgmnd 13938 . . . . . 6 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
301, 29syl 14 . . . . 5 (𝜑𝑅 ∈ Mnd)
318, 23mulgnn0cl 13683 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆) → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
3230, 2, 16, 31syl3anc 1271 . . . 4 (𝜑 → (𝐶 · (𝑁 𝐴)) ∈ 𝑆)
338, 24srgass 13942 . . . 4 ((𝑅 ∈ SRing ∧ ((𝐶 · (𝑁 𝐴)) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
341, 32, 22, 7, 33syl13anc 1273 . . 3 (𝜑 → (((𝐶 · (𝑁 𝐴)) × (𝐾 𝐵)) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
3528, 34eqtrd 2262 . 2 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)))
368, 24srgcl 13941 . . . . 5 ((𝑅 ∈ SRing ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆) → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
371, 22, 7, 36syl3anc 1271 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) ∈ 𝑆)
388, 23, 24srgmulgass 13960 . . . 4 ((𝑅 ∈ SRing ∧ (𝐶 ∈ ℕ0 ∧ (𝑁 𝐴) ∈ 𝑆 ∧ ((𝐾 𝐵) × 𝐴) ∈ 𝑆)) → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
391, 2, 16, 37, 38syl13anc 1273 . . 3 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))))
408, 24srgass 13942 . . . . . 6 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
411, 16, 22, 7, 40syl13anc 1273 . . . . 5 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
4241eqcomd 2235 . . . 4 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴))
4342oveq2d 6023 . . 3 (𝜑 → (𝐶 · ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴))) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
4439, 43eqtrd 2262 . 2 (𝜑 → ((𝐶 · (𝑁 𝐴)) × ((𝐾 𝐵) × 𝐴)) = (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)))
45 srgpcomp.c . . . 4 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
468, 24, 3, 13, 1, 7, 18, 17, 45, 6srgpcompp 13962 . . 3 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
4746oveq2d 6023 . 2 (𝜑 → (𝐶 · (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴)) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
4835, 44, 473eqtrd 2266 1 (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  1c1 8008   + caddc 8010  0cn0 9377  Basecbs 13040  .rcmulr 13119  Mndcmnd 13457  .gcmg 13664  mulGrpcmgp 13891  SRingcsrg 13934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-n0 9378  df-z 9455  df-uz 9731  df-seqfrec 10678  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-minusg 13545  df-mulg 13665  df-cmn 13831  df-mgp 13892  df-ur 13931  df-srg 13935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator