Proof of Theorem srgass
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2196 |
. . . . 5
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 2 | 1 | srgmgp 13600 |
. . . 4
⊢ (𝑅 ∈ SRing →
(mulGrp‘𝑅) ∈
Mnd) |
| 3 | 2 | adantr 276 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (mulGrp‘𝑅) ∈ Mnd) |
| 4 | | simpr1 1005 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
| 5 | | srgcl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
| 6 | 1, 5 | mgpbasg 13558 |
. . . . 5
⊢ (𝑅 ∈ SRing → 𝐵 =
(Base‘(mulGrp‘𝑅))) |
| 7 | 6 | adantr 276 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 8 | 4, 7 | eleqtrd 2275 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 9 | | simpr2 1006 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 10 | 9, 7 | eleqtrd 2275 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
| 11 | | simpr3 1007 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
| 12 | 11, 7 | eleqtrd 2275 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅))) |
| 13 | | eqid 2196 |
. . . 4
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
| 14 | | eqid 2196 |
. . . 4
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
| 15 | 13, 14 | mndass 13126 |
. . 3
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ (𝑋 ∈
(Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
| 16 | 3, 8, 10, 12, 15 | syl13anc 1251 |
. 2
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
| 17 | | srgcl.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 18 | 1, 17 | mgpplusgg 13556 |
. . . . 5
⊢ (𝑅 ∈ SRing → · =
(+g‘(mulGrp‘𝑅))) |
| 19 | 18 | adantr 276 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → · =
(+g‘(mulGrp‘𝑅))) |
| 20 | 19 | oveqd 5942 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍)) |
| 21 | 19 | oveqd 5942 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
| 22 | 21 | oveq1d 5940 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍)) |
| 23 | 20, 22 | eqtrd 2229 |
. 2
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍)) |
| 24 | 19 | oveqd 5942 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍))) |
| 25 | 19 | oveqd 5942 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍)) |
| 26 | 25 | oveq2d 5941 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
| 27 | 24, 26 | eqtrd 2229 |
. 2
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍))) |
| 28 | 16, 23, 27 | 3eqtr4d 2239 |
1
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) |