ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgass GIF version

Theorem srgass 13527
Description: Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b 𝐵 = (Base‘𝑅)
srgcl.t · = (.r𝑅)
Assertion
Ref Expression
srgass ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))

Proof of Theorem srgass
StepHypRef Expression
1 eqid 2196 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21srgmgp 13524 . . . 4 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
32adantr 276 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (mulGrp‘𝑅) ∈ Mnd)
4 simpr1 1005 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
5 srgcl.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13482 . . . . 5 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
76adantr 276 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2275 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simpr2 1006 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
109, 7eleqtrd 2275 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 simpr3 1007 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
1211, 7eleqtrd 2275 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅)))
13 eqid 2196 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
14 eqid 2196 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1513, 14mndass 13065 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
163, 8, 10, 12, 15syl13anc 1251 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
17 srgcl.t . . . . . 6 · = (.r𝑅)
181, 17mgpplusgg 13480 . . . . 5 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
1918adantr 276 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → · = (+g‘(mulGrp‘𝑅)))
2019oveqd 5939 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2119oveqd 5939 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2221oveq1d 5937 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2320, 22eqtrd 2229 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2419oveqd 5939 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)))
2519oveqd 5939 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍))
2625oveq2d 5938 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2724, 26eqtrd 2229 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2816, 23, 273eqtr4d 2239 1 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Mndcmnd 13057  mulGrpcmgp 13476  SRingcsrg 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-sgrp 13045  df-mnd 13058  df-mgp 13477  df-srg 13520
This theorem is referenced by:  srgpcomp  13546  srgpcompp  13547  srgpcomppsc  13548
  Copyright terms: Public domain W3C validator