ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgass GIF version

Theorem srgass 13675
Description: Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
Hypotheses
Ref Expression
srgcl.b 𝐵 = (Base‘𝑅)
srgcl.t · = (.r𝑅)
Assertion
Ref Expression
srgass ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))

Proof of Theorem srgass
StepHypRef Expression
1 eqid 2204 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21srgmgp 13672 . . . 4 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
32adantr 276 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (mulGrp‘𝑅) ∈ Mnd)
4 simpr1 1005 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
5 srgcl.b . . . . . 6 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13630 . . . . 5 (𝑅 ∈ SRing → 𝐵 = (Base‘(mulGrp‘𝑅)))
76adantr 276 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐵 = (Base‘(mulGrp‘𝑅)))
84, 7eleqtrd 2283 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
9 simpr2 1006 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
109, 7eleqtrd 2283 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
11 simpr3 1007 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
1211, 7eleqtrd 2283 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍 ∈ (Base‘(mulGrp‘𝑅)))
13 eqid 2204 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
14 eqid 2204 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1513, 14mndass 13198 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑍 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
163, 8, 10, 12, 15syl13anc 1251 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
17 srgcl.t . . . . . 6 · = (.r𝑅)
181, 17mgpplusgg 13628 . . . . 5 (𝑅 ∈ SRing → · = (+g‘(mulGrp‘𝑅)))
1918adantr 276 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → · = (+g‘(mulGrp‘𝑅)))
2019oveqd 5960 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2119oveqd 5960 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2221oveq1d 5958 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌)(+g‘(mulGrp‘𝑅))𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2320, 22eqtrd 2237 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = ((𝑋(+g‘(mulGrp‘𝑅))𝑌)(+g‘(mulGrp‘𝑅))𝑍))
2419oveqd 5960 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)))
2519oveqd 5960 . . . 4 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 · 𝑍) = (𝑌(+g‘(mulGrp‘𝑅))𝑍))
2625oveq2d 5959 . . 3 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(+g‘(mulGrp‘𝑅))(𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2724, 26eqtrd 2237 . 2 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 · 𝑍)) = (𝑋(+g‘(mulGrp‘𝑅))(𝑌(+g‘(mulGrp‘𝑅))𝑍)))
2816, 23, 273eqtr4d 2247 1 ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  .rcmulr 12852  Mndcmnd 13190  mulGrpcmgp 13624  SRingcsrg 13667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-sgrp 13176  df-mnd 13191  df-mgp 13625  df-srg 13668
This theorem is referenced by:  srgpcomp  13694  srgpcompp  13695  srgpcomppsc  13696
  Copyright terms: Public domain W3C validator