| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgpcompp | GIF version | ||
| Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgpcomp.m | ⊢ × = (.r‘𝑅) |
| srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
| srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| srgpcompp | ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 2 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | 2 | srgmgp 13774 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | srgpcompp.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 6 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 7 | srgpcomp.s | . . . . . . . 8 ⊢ 𝑆 = (Base‘𝑅) | |
| 8 | 2, 7 | mgpbasg 13732 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺)) |
| 9 | 1, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Base‘𝐺)) |
| 10 | 6, 9 | eleqtrd 2285 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
| 11 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 12 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 13 | 11, 12 | mulgnn0cl 13518 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 14 | 4, 5, 10, 13 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 15 | 14, 9 | eleqtrrd 2286 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
| 16 | srgpcomp.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 17 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 18 | 17, 9 | eleqtrd 2285 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐺)) |
| 19 | 11, 12 | mulgnn0cl 13518 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 20 | 4, 16, 18, 19 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 21 | 20, 9 | eleqtrrd 2286 | . . 3 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
| 22 | srgpcomp.m | . . . 4 ⊢ × = (.r‘𝑅) | |
| 23 | 7, 22 | srgass 13777 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 24 | 1, 15, 21, 6, 23 | syl13anc 1252 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 25 | srgpcomp.c | . . . . 5 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
| 26 | 7, 22, 2, 12, 1, 6, 17, 16, 25 | srgpcomp 13796 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) |
| 27 | 26 | oveq2d 5967 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 28 | 7, 22 | srgass 13777 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 29 | 1, 15, 6, 21, 28 | syl13anc 1252 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 30 | 27, 29 | eqtr4d 2242 | . 2 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵))) |
| 31 | 2, 22 | mgpplusgg 13730 | . . . . . 6 ⊢ (𝑅 ∈ SRing → × = (+g‘𝐺)) |
| 32 | 1, 31 | syl 14 | . . . . 5 ⊢ (𝜑 → × = (+g‘𝐺)) |
| 33 | 32 | oveqd 5968 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 34 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 35 | 11, 12, 34 | mulgnn0p1 13513 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 36 | 4, 5, 10, 35 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 37 | 33, 36 | eqtr4d 2242 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 + 1) ↑ 𝐴)) |
| 38 | 37 | oveq1d 5966 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| 39 | 24, 30, 38 | 3eqtrd 2243 | 1 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 1c1 7933 + caddc 7935 ℕ0cn0 9302 Basecbs 12876 +gcplusg 12953 .rcmulr 12954 Mndcmnd 13292 .gcmg 13499 mulGrpcmgp 13726 SRingcsrg 13769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-3 9103 df-n0 9303 df-z 9380 df-uz 9656 df-seqfrec 10600 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-plusg 12966 df-mulr 12967 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-minusg 13380 df-mulg 13500 df-mgp 13727 df-ur 13766 df-srg 13770 |
| This theorem is referenced by: srgpcomppsc 13798 |
| Copyright terms: Public domain | W3C validator |