ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcompp GIF version

Theorem srgpcompp 13797
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
srgpcompp.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
srgpcompp (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))

Proof of Theorem srgpcompp
StepHypRef Expression
1 srgpcomp.r . . 3 (𝜑𝑅 ∈ SRing)
2 srgpcomp.g . . . . . . 7 𝐺 = (mulGrp‘𝑅)
32srgmgp 13774 . . . . . 6 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
41, 3syl 14 . . . . 5 (𝜑𝐺 ∈ Mnd)
5 srgpcompp.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
6 srgpcomp.a . . . . . 6 (𝜑𝐴𝑆)
7 srgpcomp.s . . . . . . . 8 𝑆 = (Base‘𝑅)
82, 7mgpbasg 13732 . . . . . . 7 (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺))
91, 8syl 14 . . . . . 6 (𝜑𝑆 = (Base‘𝐺))
106, 9eleqtrd 2285 . . . . 5 (𝜑𝐴 ∈ (Base‘𝐺))
11 eqid 2206 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
12 srgpcomp.e . . . . . 6 = (.g𝐺)
1311, 12mulgnn0cl 13518 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴 ∈ (Base‘𝐺)) → (𝑁 𝐴) ∈ (Base‘𝐺))
144, 5, 10, 13syl3anc 1250 . . . 4 (𝜑 → (𝑁 𝐴) ∈ (Base‘𝐺))
1514, 9eleqtrrd 2286 . . 3 (𝜑 → (𝑁 𝐴) ∈ 𝑆)
16 srgpcomp.k . . . . 5 (𝜑𝐾 ∈ ℕ0)
17 srgpcomp.b . . . . . 6 (𝜑𝐵𝑆)
1817, 9eleqtrd 2285 . . . . 5 (𝜑𝐵 ∈ (Base‘𝐺))
1911, 12mulgnn0cl 13518 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → (𝐾 𝐵) ∈ (Base‘𝐺))
204, 16, 18, 19syl3anc 1250 . . . 4 (𝜑 → (𝐾 𝐵) ∈ (Base‘𝐺))
2120, 9eleqtrrd 2286 . . 3 (𝜑 → (𝐾 𝐵) ∈ 𝑆)
22 srgpcomp.m . . . 4 × = (.r𝑅)
237, 22srgass 13777 . . 3 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆 ∧ (𝐾 𝐵) ∈ 𝑆𝐴𝑆)) → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
241, 15, 21, 6, 23syl13anc 1252 . 2 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)))
25 srgpcomp.c . . . . 5 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
267, 22, 2, 12, 1, 6, 17, 16, 25srgpcomp 13796 . . . 4 (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
2726oveq2d 5967 . . 3 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
287, 22srgass 13777 . . . 4 ((𝑅 ∈ SRing ∧ ((𝑁 𝐴) ∈ 𝑆𝐴𝑆 ∧ (𝐾 𝐵) ∈ 𝑆)) → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
291, 15, 6, 21, 28syl13anc 1252 . . 3 (𝜑 → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = ((𝑁 𝐴) × (𝐴 × (𝐾 𝐵))))
3027, 29eqtr4d 2242 . 2 (𝜑 → ((𝑁 𝐴) × ((𝐾 𝐵) × 𝐴)) = (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)))
312, 22mgpplusgg 13730 . . . . . 6 (𝑅 ∈ SRing → × = (+g𝐺))
321, 31syl 14 . . . . 5 (𝜑× = (+g𝐺))
3332oveqd 5968 . . . 4 (𝜑 → ((𝑁 𝐴) × 𝐴) = ((𝑁 𝐴)(+g𝐺)𝐴))
34 eqid 2206 . . . . . 6 (+g𝐺) = (+g𝐺)
3511, 12, 34mulgnn0p1 13513 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝐴 ∈ (Base‘𝐺)) → ((𝑁 + 1) 𝐴) = ((𝑁 𝐴)(+g𝐺)𝐴))
364, 5, 10, 35syl3anc 1250 . . . 4 (𝜑 → ((𝑁 + 1) 𝐴) = ((𝑁 𝐴)(+g𝐺)𝐴))
3733, 36eqtr4d 2242 . . 3 (𝜑 → ((𝑁 𝐴) × 𝐴) = ((𝑁 + 1) 𝐴))
3837oveq1d 5966 . 2 (𝜑 → (((𝑁 𝐴) × 𝐴) × (𝐾 𝐵)) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
3924, 30, 383eqtrd 2243 1 (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  1c1 7933   + caddc 7935  0cn0 9302  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Mndcmnd 13292  .gcmg 13499  mulGrpcmgp 13726  SRingcsrg 13769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-n0 9303  df-z 9380  df-uz 9656  df-seqfrec 10600  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-minusg 13380  df-mulg 13500  df-mgp 13727  df-ur 13766  df-srg 13770
This theorem is referenced by:  srgpcomppsc  13798
  Copyright terms: Public domain W3C validator