| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgpcompp | GIF version | ||
| Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgpcomp.m | ⊢ × = (.r‘𝑅) |
| srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
| srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| srgpcompp | ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 2 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | 2 | srgmgp 13897 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | srgpcompp.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 6 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 7 | srgpcomp.s | . . . . . . . 8 ⊢ 𝑆 = (Base‘𝑅) | |
| 8 | 2, 7 | mgpbasg 13855 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺)) |
| 9 | 1, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Base‘𝐺)) |
| 10 | 6, 9 | eleqtrd 2288 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
| 11 | eqid 2209 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 12 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 13 | 11, 12 | mulgnn0cl 13641 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 14 | 4, 5, 10, 13 | syl3anc 1252 | . . . 4 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 15 | 14, 9 | eleqtrrd 2289 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
| 16 | srgpcomp.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 17 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 18 | 17, 9 | eleqtrd 2288 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐺)) |
| 19 | 11, 12 | mulgnn0cl 13641 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 20 | 4, 16, 18, 19 | syl3anc 1252 | . . . 4 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 21 | 20, 9 | eleqtrrd 2289 | . . 3 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
| 22 | srgpcomp.m | . . . 4 ⊢ × = (.r‘𝑅) | |
| 23 | 7, 22 | srgass 13900 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 24 | 1, 15, 21, 6, 23 | syl13anc 1254 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 25 | srgpcomp.c | . . . . 5 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
| 26 | 7, 22, 2, 12, 1, 6, 17, 16, 25 | srgpcomp 13919 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) |
| 27 | 26 | oveq2d 5990 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 28 | 7, 22 | srgass 13900 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 29 | 1, 15, 6, 21, 28 | syl13anc 1254 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 30 | 27, 29 | eqtr4d 2245 | . 2 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵))) |
| 31 | 2, 22 | mgpplusgg 13853 | . . . . . 6 ⊢ (𝑅 ∈ SRing → × = (+g‘𝐺)) |
| 32 | 1, 31 | syl 14 | . . . . 5 ⊢ (𝜑 → × = (+g‘𝐺)) |
| 33 | 32 | oveqd 5991 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 34 | eqid 2209 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 35 | 11, 12, 34 | mulgnn0p1 13636 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 36 | 4, 5, 10, 35 | syl3anc 1252 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 37 | 33, 36 | eqtr4d 2245 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 + 1) ↑ 𝐴)) |
| 38 | 37 | oveq1d 5989 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| 39 | 24, 30, 38 | 3eqtrd 2246 | 1 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 1c1 7968 + caddc 7970 ℕ0cn0 9337 Basecbs 12998 +gcplusg 13076 .rcmulr 13077 Mndcmnd 13415 .gcmg 13622 mulGrpcmgp 13849 SRingcsrg 13892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-n0 9338 df-z 9415 df-uz 9691 df-seqfrec 10637 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-plusg 13089 df-mulr 13090 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-minusg 13503 df-mulg 13623 df-mgp 13850 df-ur 13889 df-srg 13893 |
| This theorem is referenced by: srgpcomppsc 13921 |
| Copyright terms: Public domain | W3C validator |