Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srgpcompp | GIF version |
Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
srgpcomp.m | ⊢ × = (.r‘𝑅) |
srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
srgpcompp | ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgpcomp.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
2 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | 2 | srgmgp 12944 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
5 | srgpcompp.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
6 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
7 | srgpcomp.s | . . . . . . . 8 ⊢ 𝑆 = (Base‘𝑅) | |
8 | 2, 7 | mgpbasg 12930 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺)) |
9 | 1, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Base‘𝐺)) |
10 | 6, 9 | eleqtrd 2254 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
11 | eqid 2175 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
12 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
13 | 11, 12 | mulgnn0cl 12858 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
14 | 4, 5, 10, 13 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
15 | 14, 9 | eleqtrrd 2255 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
16 | srgpcomp.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
17 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
18 | 17, 9 | eleqtrd 2254 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐺)) |
19 | 11, 12 | mulgnn0cl 12858 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
20 | 4, 16, 18, 19 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
21 | 20, 9 | eleqtrrd 2255 | . . 3 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
22 | srgpcomp.m | . . . 4 ⊢ × = (.r‘𝑅) | |
23 | 7, 22 | srgass 12947 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
24 | 1, 15, 21, 6, 23 | syl13anc 1240 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
25 | srgpcomp.c | . . . . 5 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
26 | 7, 22, 2, 12, 1, 6, 17, 16, 25 | srgpcomp 12966 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) |
27 | 26 | oveq2d 5881 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
28 | 7, 22 | srgass 12947 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
29 | 1, 15, 6, 21, 28 | syl13anc 1240 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
30 | 27, 29 | eqtr4d 2211 | . 2 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵))) |
31 | 2, 22 | mgpplusgg 12929 | . . . . . 6 ⊢ (𝑅 ∈ SRing → × = (+g‘𝐺)) |
32 | 1, 31 | syl 14 | . . . . 5 ⊢ (𝜑 → × = (+g‘𝐺)) |
33 | 32 | oveqd 5882 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
34 | eqid 2175 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
35 | 11, 12, 34 | mulgnn0p1 12853 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
36 | 4, 5, 10, 35 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
37 | 33, 36 | eqtr4d 2211 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 + 1) ↑ 𝐴)) |
38 | 37 | oveq1d 5880 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
39 | 24, 30, 38 | 3eqtrd 2212 | 1 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 1c1 7787 + caddc 7789 ℕ0cn0 9147 Basecbs 12428 +gcplusg 12492 .rcmulr 12493 Mndcmnd 12682 .gcmg 12842 mulGrpcmgp 12925 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-2 8949 df-3 8950 df-n0 9148 df-z 9225 df-uz 9500 df-seqfrec 10414 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-minusg 12742 df-mulg 12843 df-mgp 12926 df-ur 12936 df-srg 12940 |
This theorem is referenced by: srgpcomppsc 12968 |
Copyright terms: Public domain | W3C validator |