| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > srgpcompp | GIF version | ||
| Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| srgpcomp.s | ⊢ 𝑆 = (Base‘𝑅) |
| srgpcomp.m | ⊢ × = (.r‘𝑅) |
| srgpcomp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| srgpcomp.e | ⊢ ↑ = (.g‘𝐺) |
| srgpcomp.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| srgpcomp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| srgpcomp.b | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| srgpcomp.k | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| srgpcomp.c | ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| srgpcompp.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| srgpcompp | ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgpcomp.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 2 | srgpcomp.g | . . . . . . 7 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | 2 | srgmgp 13939 | . . . . . 6 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 4 | 1, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 5 | srgpcompp.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 6 | srgpcomp.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 7 | srgpcomp.s | . . . . . . . 8 ⊢ 𝑆 = (Base‘𝑅) | |
| 8 | 2, 7 | mgpbasg 13897 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺)) |
| 9 | 1, 8 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Base‘𝐺)) |
| 10 | 6, 9 | eleqtrd 2308 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐺)) |
| 11 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 12 | srgpcomp.e | . . . . . 6 ⊢ ↑ = (.g‘𝐺) | |
| 13 | 11, 12 | mulgnn0cl 13683 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 14 | 4, 5, 10, 13 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ (Base‘𝐺)) |
| 15 | 14, 9 | eleqtrrd 2309 | . . 3 ⊢ (𝜑 → (𝑁 ↑ 𝐴) ∈ 𝑆) |
| 16 | srgpcomp.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
| 17 | srgpcomp.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 18 | 17, 9 | eleqtrd 2308 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐺)) |
| 19 | 11, 12 | mulgnn0cl 13683 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝐾 ∈ ℕ0 ∧ 𝐵 ∈ (Base‘𝐺)) → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 20 | 4, 16, 18, 19 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 21 | 20, 9 | eleqtrrd 2309 | . . 3 ⊢ (𝜑 → (𝐾 ↑ 𝐵) ∈ 𝑆) |
| 22 | srgpcomp.m | . . . 4 ⊢ × = (.r‘𝑅) | |
| 23 | 7, 22 | srgass 13942 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 24 | 1, 15, 21, 6, 23 | syl13anc 1273 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴))) |
| 25 | srgpcomp.c | . . . . 5 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) | |
| 26 | 7, 22, 2, 12, 1, 6, 17, 16, 25 | srgpcomp 13961 | . . . 4 ⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) |
| 27 | 26 | oveq2d 6023 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 28 | 7, 22 | srgass 13942 | . . . 4 ⊢ ((𝑅 ∈ SRing ∧ ((𝑁 ↑ 𝐴) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ (𝐾 ↑ 𝐵) ∈ 𝑆)) → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 29 | 1, 15, 6, 21, 28 | syl13anc 1273 | . . 3 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = ((𝑁 ↑ 𝐴) × (𝐴 × (𝐾 ↑ 𝐵)))) |
| 30 | 27, 29 | eqtr4d 2265 | . 2 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × ((𝐾 ↑ 𝐵) × 𝐴)) = (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵))) |
| 31 | 2, 22 | mgpplusgg 13895 | . . . . . 6 ⊢ (𝑅 ∈ SRing → × = (+g‘𝐺)) |
| 32 | 1, 31 | syl 14 | . . . . 5 ⊢ (𝜑 → × = (+g‘𝐺)) |
| 33 | 32 | oveqd 6024 | . . . 4 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 34 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 35 | 11, 12, 34 | mulgnn0p1 13678 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (Base‘𝐺)) → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 36 | 4, 5, 10, 35 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → ((𝑁 + 1) ↑ 𝐴) = ((𝑁 ↑ 𝐴)(+g‘𝐺)𝐴)) |
| 37 | 33, 36 | eqtr4d 2265 | . . 3 ⊢ (𝜑 → ((𝑁 ↑ 𝐴) × 𝐴) = ((𝑁 + 1) ↑ 𝐴)) |
| 38 | 37 | oveq1d 6022 | . 2 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × 𝐴) × (𝐾 ↑ 𝐵)) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| 39 | 24, 30, 38 | 3eqtrd 2266 | 1 ⊢ (𝜑 → (((𝑁 ↑ 𝐴) × (𝐾 ↑ 𝐵)) × 𝐴) = (((𝑁 + 1) ↑ 𝐴) × (𝐾 ↑ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 1c1 8008 + caddc 8010 ℕ0cn0 9377 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 Mndcmnd 13457 .gcmg 13664 mulGrpcmgp 13891 SRingcsrg 13934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-3 9178 df-n0 9378 df-z 9455 df-uz 9731 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-minusg 13545 df-mulg 13665 df-mgp 13892 df-ur 13931 df-srg 13935 |
| This theorem is referenced by: srgpcomppsc 13963 |
| Copyright terms: Public domain | W3C validator |