![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > srg1expzeq1 | GIF version |
Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 13020. (Contributed by AV, 25-Nov-2019.) |
Ref | Expression |
---|---|
srg1expzeq1.g | โข ๐บ = (mulGrpโ๐ ) |
srg1expzeq1.t | โข ยท = (.gโ๐บ) |
srg1expzeq1.1 | โข 1 = (1rโ๐ ) |
Ref | Expression |
---|---|
srg1expzeq1 | โข ((๐ โ SRing โง ๐ โ โ0) โ (๐ ยท 1 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srg1expzeq1.g | . . . 4 โข ๐บ = (mulGrpโ๐ ) | |
2 | 1 | srgmgp 13162 | . . 3 โข (๐ โ SRing โ ๐บ โ Mnd) |
3 | eqid 2177 | . . . 4 โข (Baseโ๐บ) = (Baseโ๐บ) | |
4 | srg1expzeq1.t | . . . 4 โข ยท = (.gโ๐บ) | |
5 | eqid 2177 | . . . 4 โข (0gโ๐บ) = (0gโ๐บ) | |
6 | 3, 4, 5 | mulgnn0z 13020 | . . 3 โข ((๐บ โ Mnd โง ๐ โ โ0) โ (๐ ยท (0gโ๐บ)) = (0gโ๐บ)) |
7 | 2, 6 | sylan 283 | . 2 โข ((๐ โ SRing โง ๐ โ โ0) โ (๐ ยท (0gโ๐บ)) = (0gโ๐บ)) |
8 | srg1expzeq1.1 | . . . . . 6 โข 1 = (1rโ๐ ) | |
9 | 1, 8 | ringidvalg 13155 | . . . . 5 โข (๐ โ SRing โ 1 = (0gโ๐บ)) |
10 | 9 | oveq2d 5894 | . . . 4 โข (๐ โ SRing โ (๐ ยท 1 ) = (๐ ยท (0gโ๐บ))) |
11 | 10, 9 | eqeq12d 2192 | . . 3 โข (๐ โ SRing โ ((๐ ยท 1 ) = 1 โ (๐ ยท (0gโ๐บ)) = (0gโ๐บ))) |
12 | 11 | adantr 276 | . 2 โข ((๐ โ SRing โง ๐ โ โ0) โ ((๐ ยท 1 ) = 1 โ (๐ ยท (0gโ๐บ)) = (0gโ๐บ))) |
13 | 7, 12 | mpbird 167 | 1 โข ((๐ โ SRing โง ๐ โ โ0) โ (๐ ยท 1 ) = 1 ) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 โ wb 105 = wceq 1353 โ wcel 2148 โcfv 5218 (class class class)co 5878 โ0cn0 9179 Basecbs 12465 0gc0g 12711 Mndcmnd 12824 .gcmg 12992 mulGrpcmgp 13141 1rcur 13153 SRingcsrg 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-frec 6395 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-2 8981 df-3 8982 df-n0 9180 df-z 9257 df-uz 9532 df-fz 10012 df-fzo 10146 df-seqfrec 10449 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12782 df-sgrp 12815 df-mnd 12825 df-minusg 12888 df-mulg 12993 df-mgp 13142 df-ur 13154 df-srg 13158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |