Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > srg1expzeq1 | GIF version |
Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 12868. (Contributed by AV, 25-Nov-2019.) |
Ref | Expression |
---|---|
srg1expzeq1.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
srg1expzeq1.t | ⊢ · = (.g‘𝐺) |
srg1expzeq1.1 | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
srg1expzeq1 | ⊢ ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · 1 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srg1expzeq1.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | srgmgp 12944 | . . 3 ⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
3 | eqid 2175 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | srg1expzeq1.t | . . . 4 ⊢ · = (.g‘𝐺) | |
5 | eqid 2175 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 3, 4, 5 | mulgnn0z 12868 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · (0g‘𝐺)) = (0g‘𝐺)) |
7 | 2, 6 | sylan 283 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · (0g‘𝐺)) = (0g‘𝐺)) |
8 | srg1expzeq1.1 | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
9 | 1, 8 | ringidvalg 12937 | . . . . 5 ⊢ (𝑅 ∈ SRing → 1 = (0g‘𝐺)) |
10 | 9 | oveq2d 5881 | . . . 4 ⊢ (𝑅 ∈ SRing → (𝑁 · 1 ) = (𝑁 · (0g‘𝐺))) |
11 | 10, 9 | eqeq12d 2190 | . . 3 ⊢ (𝑅 ∈ SRing → ((𝑁 · 1 ) = 1 ↔ (𝑁 · (0g‘𝐺)) = (0g‘𝐺))) |
12 | 11 | adantr 276 | . 2 ⊢ ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → ((𝑁 · 1 ) = 1 ↔ (𝑁 · (0g‘𝐺)) = (0g‘𝐺))) |
13 | 7, 12 | mpbird 167 | 1 ⊢ ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · 1 ) = 1 ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 ℕ0cn0 9147 Basecbs 12428 0gc0g 12626 Mndcmnd 12682 .gcmg 12842 mulGrpcmgp 12925 1rcur 12935 SRingcsrg 12939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8891 df-2 8949 df-3 8950 df-n0 9148 df-z 9225 df-uz 9500 df-fz 9978 df-fzo 10111 df-seqfrec 10414 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-minusg 12742 df-mulg 12843 df-mgp 12926 df-ur 12936 df-srg 12940 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |