ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srg1expzeq1 GIF version

Theorem srg1expzeq1 13551
Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 13279. (Contributed by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
srg1expzeq1.g 𝐺 = (mulGrp‘𝑅)
srg1expzeq1.t · = (.g𝐺)
srg1expzeq1.1 1 = (1r𝑅)
Assertion
Ref Expression
srg1expzeq1 ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · 1 ) = 1 )

Proof of Theorem srg1expzeq1
StepHypRef Expression
1 srg1expzeq1.g . . . 4 𝐺 = (mulGrp‘𝑅)
21srgmgp 13524 . . 3 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
3 eqid 2196 . . . 4 (Base‘𝐺) = (Base‘𝐺)
4 srg1expzeq1.t . . . 4 · = (.g𝐺)
5 eqid 2196 . . . 4 (0g𝐺) = (0g𝐺)
63, 4, 5mulgnn0z 13279 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · (0g𝐺)) = (0g𝐺))
72, 6sylan 283 . 2 ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · (0g𝐺)) = (0g𝐺))
8 srg1expzeq1.1 . . . . . 6 1 = (1r𝑅)
91, 8ringidvalg 13517 . . . . 5 (𝑅 ∈ SRing → 1 = (0g𝐺))
109oveq2d 5938 . . . 4 (𝑅 ∈ SRing → (𝑁 · 1 ) = (𝑁 · (0g𝐺)))
1110, 9eqeq12d 2211 . . 3 (𝑅 ∈ SRing → ((𝑁 · 1 ) = 1 ↔ (𝑁 · (0g𝐺)) = (0g𝐺)))
1211adantr 276 . 2 ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → ((𝑁 · 1 ) = 1 ↔ (𝑁 · (0g𝐺)) = (0g𝐺)))
137, 12mpbird 167 1 ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · 1 ) = 1 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cfv 5258  (class class class)co 5922  0cn0 9249  Basecbs 12678  0gc0g 12927  Mndcmnd 13057  .gcmg 13249  mulGrpcmgp 13476  1rcur 13515  SRingcsrg 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-minusg 13136  df-mulg 13250  df-mgp 13477  df-ur 13516  df-srg 13520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator