| Step | Hyp | Ref
| Expression |
| 1 | | srgpcomp.k |
. 2
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 2 | | oveq1 5929 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑥 ↑ 𝐵) = (0 ↑ 𝐵)) |
| 3 | 2 | oveq1d 5937 |
. . . . 5
⊢ (𝑥 = 0 → ((𝑥 ↑ 𝐵) × 𝐴) = ((0 ↑ 𝐵) × 𝐴)) |
| 4 | 2 | oveq2d 5938 |
. . . . 5
⊢ (𝑥 = 0 → (𝐴 × (𝑥 ↑ 𝐵)) = (𝐴 × (0 ↑ 𝐵))) |
| 5 | 3, 4 | eqeq12d 2211 |
. . . 4
⊢ (𝑥 = 0 → (((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵)) ↔ ((0 ↑ 𝐵) × 𝐴) = (𝐴 × (0 ↑ 𝐵)))) |
| 6 | 5 | imbi2d 230 |
. . 3
⊢ (𝑥 = 0 → ((𝜑 → ((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵))) ↔ (𝜑 → ((0 ↑ 𝐵) × 𝐴) = (𝐴 × (0 ↑ 𝐵))))) |
| 7 | | oveq1 5929 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ↑ 𝐵) = (𝑦 ↑ 𝐵)) |
| 8 | 7 | oveq1d 5937 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ↑ 𝐵) × 𝐴) = ((𝑦 ↑ 𝐵) × 𝐴)) |
| 9 | 7 | oveq2d 5938 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 × (𝑥 ↑ 𝐵)) = (𝐴 × (𝑦 ↑ 𝐵))) |
| 10 | 8, 9 | eqeq12d 2211 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵)) ↔ ((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵)))) |
| 11 | 10 | imbi2d 230 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝜑 → ((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵))) ↔ (𝜑 → ((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵))))) |
| 12 | | oveq1 5929 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝑥 ↑ 𝐵) = ((𝑦 + 1) ↑ 𝐵)) |
| 13 | 12 | oveq1d 5937 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ↑ 𝐵) × 𝐴) = (((𝑦 + 1) ↑ 𝐵) × 𝐴)) |
| 14 | 12 | oveq2d 5938 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐴 × (𝑥 ↑ 𝐵)) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))) |
| 15 | 13, 14 | eqeq12d 2211 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵)) ↔ (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) ↑ 𝐵)))) |
| 16 | 15 | imbi2d 230 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝜑 → ((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵))) ↔ (𝜑 → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))))) |
| 17 | | oveq1 5929 |
. . . . . 6
⊢ (𝑥 = 𝐾 → (𝑥 ↑ 𝐵) = (𝐾 ↑ 𝐵)) |
| 18 | 17 | oveq1d 5937 |
. . . . 5
⊢ (𝑥 = 𝐾 → ((𝑥 ↑ 𝐵) × 𝐴) = ((𝐾 ↑ 𝐵) × 𝐴)) |
| 19 | 17 | oveq2d 5938 |
. . . . 5
⊢ (𝑥 = 𝐾 → (𝐴 × (𝑥 ↑ 𝐵)) = (𝐴 × (𝐾 ↑ 𝐵))) |
| 20 | 18, 19 | eqeq12d 2211 |
. . . 4
⊢ (𝑥 = 𝐾 → (((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵)) ↔ ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵)))) |
| 21 | 20 | imbi2d 230 |
. . 3
⊢ (𝑥 = 𝐾 → ((𝜑 → ((𝑥 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑥 ↑ 𝐵))) ↔ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))))) |
| 22 | | srgpcomp.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| 23 | | srgpcomp.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ SRing) |
| 24 | | srgpcomp.g |
. . . . . . . . . 10
⊢ 𝐺 = (mulGrp‘𝑅) |
| 25 | | srgpcomp.s |
. . . . . . . . . 10
⊢ 𝑆 = (Base‘𝑅) |
| 26 | 24, 25 | mgpbasg 13482 |
. . . . . . . . 9
⊢ (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺)) |
| 27 | 23, 26 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = (Base‘𝐺)) |
| 28 | 22, 27 | eleqtrd 2275 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (Base‘𝐺)) |
| 29 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 30 | | eqid 2196 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 31 | | srgpcomp.e |
. . . . . . . 8
⊢ ↑ =
(.g‘𝐺) |
| 32 | 29, 30, 31 | mulg0 13255 |
. . . . . . 7
⊢ (𝐵 ∈ (Base‘𝐺) → (0 ↑ 𝐵) = (0g‘𝐺)) |
| 33 | 28, 32 | syl 14 |
. . . . . 6
⊢ (𝜑 → (0 ↑ 𝐵) = (0g‘𝐺)) |
| 34 | | eqid 2196 |
. . . . . . . 8
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 35 | 24, 34 | ringidvalg 13517 |
. . . . . . 7
⊢ (𝑅 ∈ SRing →
(1r‘𝑅) =
(0g‘𝐺)) |
| 36 | 23, 35 | syl 14 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑅) = (0g‘𝐺)) |
| 37 | 33, 36 | eqtr4d 2232 |
. . . . 5
⊢ (𝜑 → (0 ↑ 𝐵) = (1r‘𝑅)) |
| 38 | 37 | oveq1d 5937 |
. . . 4
⊢ (𝜑 → ((0 ↑ 𝐵) × 𝐴) = ((1r‘𝑅) × 𝐴)) |
| 39 | | srgpcomp.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 40 | | srgpcomp.m |
. . . . . . 7
⊢ × =
(.r‘𝑅) |
| 41 | 25, 40, 34 | srgridm 13536 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆) → (𝐴 ×
(1r‘𝑅)) =
𝐴) |
| 42 | 23, 39, 41 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝐴 ×
(1r‘𝑅)) =
𝐴) |
| 43 | 37 | oveq2d 5938 |
. . . . 5
⊢ (𝜑 → (𝐴 × (0 ↑ 𝐵)) = (𝐴 ×
(1r‘𝑅))) |
| 44 | 25, 40, 34 | srglidm 13535 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝐴 ∈ 𝑆) → ((1r‘𝑅) × 𝐴) = 𝐴) |
| 45 | 23, 39, 44 | syl2anc 411 |
. . . . 5
⊢ (𝜑 →
((1r‘𝑅)
×
𝐴) = 𝐴) |
| 46 | 42, 43, 45 | 3eqtr4rd 2240 |
. . . 4
⊢ (𝜑 →
((1r‘𝑅)
×
𝐴) = (𝐴 × (0 ↑ 𝐵))) |
| 47 | 38, 46 | eqtrd 2229 |
. . 3
⊢ (𝜑 → ((0 ↑ 𝐵) × 𝐴) = (𝐴 × (0 ↑ 𝐵))) |
| 48 | 24 | srgmgp 13524 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ SRing → 𝐺 ∈ Mnd) |
| 49 | 23, 48 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 50 | 49 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd) |
| 51 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈
ℕ0) |
| 52 | 22 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝐵 ∈ 𝑆) |
| 53 | 27 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑆 = (Base‘𝐺)) |
| 54 | 52, 53 | eleqtrd 2275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝐵 ∈ (Base‘𝐺)) |
| 55 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 56 | 29, 31, 55 | mulgnn0p1 13263 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐵 ∈
(Base‘𝐺)) →
((𝑦 + 1) ↑ 𝐵) = ((𝑦 ↑ 𝐵)(+g‘𝐺)𝐵)) |
| 57 | 50, 51, 54, 56 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) ↑ 𝐵) = ((𝑦 ↑ 𝐵)(+g‘𝐺)𝐵)) |
| 58 | 24, 40 | mgpplusgg 13480 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ SRing → × =
(+g‘𝐺)) |
| 59 | 23, 58 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → × =
(+g‘𝐺)) |
| 60 | 59 | oveqd 5939 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑦 ↑ 𝐵) × 𝐵) = ((𝑦 ↑ 𝐵)(+g‘𝐺)𝐵)) |
| 61 | 60 | eqeq2d 2208 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑦 + 1) ↑ 𝐵) = ((𝑦 ↑ 𝐵) × 𝐵) ↔ ((𝑦 + 1) ↑ 𝐵) = ((𝑦 ↑ 𝐵)(+g‘𝐺)𝐵))) |
| 62 | 61 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) ↑ 𝐵) = ((𝑦 ↑ 𝐵) × 𝐵) ↔ ((𝑦 + 1) ↑ 𝐵) = ((𝑦 ↑ 𝐵)(+g‘𝐺)𝐵))) |
| 63 | 57, 62 | mpbird 167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) ↑ 𝐵) = ((𝑦 ↑ 𝐵) × 𝐵)) |
| 64 | 63 | oveq1d 5937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (((𝑦 ↑ 𝐵) × 𝐵) × 𝐴)) |
| 65 | | srgpcomp.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴)) |
| 66 | 65 | eqcomd 2202 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 × 𝐴) = (𝐴 × 𝐵)) |
| 67 | 66 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝐵 × 𝐴) = (𝐴 × 𝐵)) |
| 68 | 67 | oveq2d 5938 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑦 ↑ 𝐵) × (𝐵 × 𝐴)) = ((𝑦 ↑ 𝐵) × (𝐴 × 𝐵))) |
| 69 | 23 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝑅 ∈ SRing) |
| 70 | 29, 31 | mulgnn0cl 13268 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0
∧ 𝐵 ∈
(Base‘𝐺)) →
(𝑦 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 71 | 50, 51, 54, 70 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝑦 ↑ 𝐵) ∈ (Base‘𝐺)) |
| 72 | 71, 53 | eleqtrrd 2276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝑦 ↑ 𝐵) ∈ 𝑆) |
| 73 | 39 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ 𝑆) |
| 74 | 25, 40 | srgass 13527 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ SRing ∧ ((𝑦 ↑ 𝐵) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (((𝑦 ↑ 𝐵) × 𝐵) × 𝐴) = ((𝑦 ↑ 𝐵) × (𝐵 × 𝐴))) |
| 75 | 69, 72, 52, 73, 74 | syl13anc 1251 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑦 ↑ 𝐵) × 𝐵) × 𝐴) = ((𝑦 ↑ 𝐵) × (𝐵 × 𝐴))) |
| 76 | 25, 40 | srgass 13527 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ SRing ∧ ((𝑦 ↑ 𝐵) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (((𝑦 ↑ 𝐵) × 𝐴) × 𝐵) = ((𝑦 ↑ 𝐵) × (𝐴 × 𝐵))) |
| 77 | 69, 72, 73, 52, 76 | syl13anc 1251 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑦 ↑ 𝐵) × 𝐴) × 𝐵) = ((𝑦 ↑ 𝐵) × (𝐴 × 𝐵))) |
| 78 | 68, 75, 77 | 3eqtr4d 2239 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑦 ↑ 𝐵) × 𝐵) × 𝐴) = (((𝑦 ↑ 𝐵) × 𝐴) × 𝐵)) |
| 79 | 64, 78 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (((𝑦 ↑ 𝐵) × 𝐴) × 𝐵)) |
| 80 | 79 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵))) → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (((𝑦 ↑ 𝐵) × 𝐴) × 𝐵)) |
| 81 | | oveq1 5929 |
. . . . . . . 8
⊢ (((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵)) → (((𝑦 ↑ 𝐵) × 𝐴) × 𝐵) = ((𝐴 × (𝑦 ↑ 𝐵)) × 𝐵)) |
| 82 | 25, 40 | srgass 13527 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ SRing ∧ (𝐴 ∈ 𝑆 ∧ (𝑦 ↑ 𝐵) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → ((𝐴 × (𝑦 ↑ 𝐵)) × 𝐵) = (𝐴 × ((𝑦 ↑ 𝐵) × 𝐵))) |
| 83 | 69, 73, 72, 52, 82 | syl13anc 1251 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 ↑ 𝐵)) × 𝐵) = (𝐴 × ((𝑦 ↑ 𝐵) × 𝐵))) |
| 84 | 63 | eqcomd 2202 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝑦 ↑ 𝐵) × 𝐵) = ((𝑦 + 1) ↑ 𝐵)) |
| 85 | 84 | oveq2d 5938 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (𝐴 × ((𝑦 ↑ 𝐵) × 𝐵)) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))) |
| 86 | 83, 85 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 ↑ 𝐵)) × 𝐵) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))) |
| 87 | 81, 86 | sylan9eqr 2251 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵))) → (((𝑦 ↑ 𝐵) × 𝐴) × 𝐵) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))) |
| 88 | 80, 87 | eqtrd 2229 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ ((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵))) → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))) |
| 89 | 88 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) → (((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵)) → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) ↑ 𝐵)))) |
| 90 | 89 | expcom 116 |
. . . 4
⊢ (𝑦 ∈ ℕ0
→ (𝜑 → (((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵)) → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))))) |
| 91 | 90 | a2d 26 |
. . 3
⊢ (𝑦 ∈ ℕ0
→ ((𝜑 → ((𝑦 ↑ 𝐵) × 𝐴) = (𝐴 × (𝑦 ↑ 𝐵))) → (𝜑 → (((𝑦 + 1) ↑ 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) ↑ 𝐵))))) |
| 92 | 6, 11, 16, 21, 47, 91 | nn0ind 9440 |
. 2
⊢ (𝐾 ∈ ℕ0
→ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵)))) |
| 93 | 1, 92 | mpcom 36 |
1
⊢ (𝜑 → ((𝐾 ↑ 𝐵) × 𝐴) = (𝐴 × (𝐾 ↑ 𝐵))) |