ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomp GIF version

Theorem srgpcomp 13622
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
Assertion
Ref Expression
srgpcomp (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))

Proof of Theorem srgpcomp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgpcomp.k . 2 (𝜑𝐾 ∈ ℕ0)
2 oveq1 5932 . . . . . 6 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
32oveq1d 5940 . . . . 5 (𝑥 = 0 → ((𝑥 𝐵) × 𝐴) = ((0 𝐵) × 𝐴))
42oveq2d 5941 . . . . 5 (𝑥 = 0 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (0 𝐵)))
53, 4eqeq12d 2211 . . . 4 (𝑥 = 0 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵))))
65imbi2d 230 . . 3 (𝑥 = 0 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))))
7 oveq1 5932 . . . . . 6 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
87oveq1d 5940 . . . . 5 (𝑥 = 𝑦 → ((𝑥 𝐵) × 𝐴) = ((𝑦 𝐵) × 𝐴))
97oveq2d 5941 . . . . 5 (𝑥 = 𝑦 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝑦 𝐵)))
108, 9eqeq12d 2211 . . . 4 (𝑥 = 𝑦 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))))
1110imbi2d 230 . . 3 (𝑥 = 𝑦 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)))))
12 oveq1 5932 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
1312oveq1d 5940 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) × 𝐴) = (((𝑦 + 1) 𝐵) × 𝐴))
1412oveq2d 5941 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 × (𝑥 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
1513, 14eqeq12d 2211 . . . 4 (𝑥 = (𝑦 + 1) → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
1615imbi2d 230 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
17 oveq1 5932 . . . . . 6 (𝑥 = 𝐾 → (𝑥 𝐵) = (𝐾 𝐵))
1817oveq1d 5940 . . . . 5 (𝑥 = 𝐾 → ((𝑥 𝐵) × 𝐴) = ((𝐾 𝐵) × 𝐴))
1917oveq2d 5941 . . . . 5 (𝑥 = 𝐾 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝐾 𝐵)))
2018, 19eqeq12d 2211 . . . 4 (𝑥 = 𝐾 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
2120imbi2d 230 . . 3 (𝑥 = 𝐾 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))))
22 srgpcomp.b . . . . . . . 8 (𝜑𝐵𝑆)
23 srgpcomp.r . . . . . . . . 9 (𝜑𝑅 ∈ SRing)
24 srgpcomp.g . . . . . . . . . 10 𝐺 = (mulGrp‘𝑅)
25 srgpcomp.s . . . . . . . . . 10 𝑆 = (Base‘𝑅)
2624, 25mgpbasg 13558 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺))
2723, 26syl 14 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐺))
2822, 27eleqtrd 2275 . . . . . . 7 (𝜑𝐵 ∈ (Base‘𝐺))
29 eqid 2196 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
30 eqid 2196 . . . . . . . 8 (0g𝐺) = (0g𝐺)
31 srgpcomp.e . . . . . . . 8 = (.g𝐺)
3229, 30, 31mulg0 13331 . . . . . . 7 (𝐵 ∈ (Base‘𝐺) → (0 𝐵) = (0g𝐺))
3328, 32syl 14 . . . . . 6 (𝜑 → (0 𝐵) = (0g𝐺))
34 eqid 2196 . . . . . . . 8 (1r𝑅) = (1r𝑅)
3524, 34ringidvalg 13593 . . . . . . 7 (𝑅 ∈ SRing → (1r𝑅) = (0g𝐺))
3623, 35syl 14 . . . . . 6 (𝜑 → (1r𝑅) = (0g𝐺))
3733, 36eqtr4d 2232 . . . . 5 (𝜑 → (0 𝐵) = (1r𝑅))
3837oveq1d 5940 . . . 4 (𝜑 → ((0 𝐵) × 𝐴) = ((1r𝑅) × 𝐴))
39 srgpcomp.a . . . . . 6 (𝜑𝐴𝑆)
40 srgpcomp.m . . . . . . 7 × = (.r𝑅)
4125, 40, 34srgridm 13612 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → (𝐴 × (1r𝑅)) = 𝐴)
4223, 39, 41syl2anc 411 . . . . 5 (𝜑 → (𝐴 × (1r𝑅)) = 𝐴)
4337oveq2d 5941 . . . . 5 (𝜑 → (𝐴 × (0 𝐵)) = (𝐴 × (1r𝑅)))
4425, 40, 34srglidm 13611 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → ((1r𝑅) × 𝐴) = 𝐴)
4523, 39, 44syl2anc 411 . . . . 5 (𝜑 → ((1r𝑅) × 𝐴) = 𝐴)
4642, 43, 453eqtr4rd 2240 . . . 4 (𝜑 → ((1r𝑅) × 𝐴) = (𝐴 × (0 𝐵)))
4738, 46eqtrd 2229 . . 3 (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))
4824srgmgp 13600 . . . . . . . . . . . . . 14 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
4923, 48syl 14 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Mnd)
5049adantr 276 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
51 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
5222adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ0) → 𝐵𝑆)
5327adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ0) → 𝑆 = (Base‘𝐺))
5452, 53eleqtrd 2275 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → 𝐵 ∈ (Base‘𝐺))
55 eqid 2196 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
5629, 31, 55mulgnn0p1 13339 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵))
5750, 51, 54, 56syl3anc 1249 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵))
5824, 40mgpplusgg 13556 . . . . . . . . . . . . . . 15 (𝑅 ∈ SRing → × = (+g𝐺))
5923, 58syl 14 . . . . . . . . . . . . . 14 (𝜑× = (+g𝐺))
6059oveqd 5942 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 𝐵) × 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵))
6160eqeq2d 2208 . . . . . . . . . . . 12 (𝜑 → (((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵)))
6261adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵)))
6357, 62mpbird 167 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵))
6463oveq1d 5940 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐵) × 𝐴))
65 srgpcomp.c . . . . . . . . . . . . 13 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
6665eqcomd 2202 . . . . . . . . . . . 12 (𝜑 → (𝐵 × 𝐴) = (𝐴 × 𝐵))
6766adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝐵 × 𝐴) = (𝐴 × 𝐵))
6867oveq2d 5941 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × (𝐵 × 𝐴)) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
6923adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝑅 ∈ SRing)
7029, 31mulgnn0cl 13344 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → (𝑦 𝐵) ∈ (Base‘𝐺))
7150, 51, 54, 70syl3anc 1249 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → (𝑦 𝐵) ∈ (Base‘𝐺))
7271, 53eleqtrrd 2276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝑦 𝐵) ∈ 𝑆)
7339adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐴𝑆)
7425, 40srgass 13603 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐵𝑆𝐴𝑆)) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
7569, 72, 52, 73, 74syl13anc 1251 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
7625, 40srgass 13603 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐴𝑆𝐵𝑆)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
7769, 72, 73, 52, 76syl13anc 1251 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
7868, 75, 773eqtr4d 2239 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
7964, 78eqtrd 2229 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
8079adantr 276 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
81 oveq1 5932 . . . . . . . 8 (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝐴 × (𝑦 𝐵)) × 𝐵))
8225, 40srgass 13603 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆 ∧ (𝑦 𝐵) ∈ 𝑆𝐵𝑆)) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
8369, 73, 72, 52, 82syl13anc 1251 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
8463eqcomd 2202 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × 𝐵) = ((𝑦 + 1) 𝐵))
8584oveq2d 5941 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (𝐴 × ((𝑦 𝐵) × 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
8683, 85eqtrd 2229 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
8781, 86sylan9eqr 2251 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 𝐵) × 𝐴) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
8880, 87eqtrd 2229 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))
8988ex 115 . . . . 5 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
9089expcom 116 . . . 4 (𝑦 ∈ ℕ0 → (𝜑 → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
9190a2d 26 . . 3 (𝑦 ∈ ℕ0 → ((𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
926, 11, 16, 21, 47, 91nn0ind 9457 . 2 (𝐾 ∈ ℕ0 → (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
931, 92mpcom 36 1 (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899  0cn0 9266  Basecbs 12703  +gcplusg 12780  .rcmulr 12781  0gc0g 12958  Mndcmnd 13118  .gcmg 13325  mulGrpcmgp 13552  1rcur 13591  SRingcsrg 13595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-minusg 13206  df-mulg 13326  df-mgp 13553  df-ur 13592  df-srg 13596
This theorem is referenced by:  srgpcompp  13623
  Copyright terms: Public domain W3C validator