ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgpcomp GIF version

Theorem srgpcomp 13312
Description: If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
Hypotheses
Ref Expression
srgpcomp.s 𝑆 = (Base‘𝑅)
srgpcomp.m × = (.r𝑅)
srgpcomp.g 𝐺 = (mulGrp‘𝑅)
srgpcomp.e = (.g𝐺)
srgpcomp.r (𝜑𝑅 ∈ SRing)
srgpcomp.a (𝜑𝐴𝑆)
srgpcomp.b (𝜑𝐵𝑆)
srgpcomp.k (𝜑𝐾 ∈ ℕ0)
srgpcomp.c (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
Assertion
Ref Expression
srgpcomp (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))

Proof of Theorem srgpcomp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srgpcomp.k . 2 (𝜑𝐾 ∈ ℕ0)
2 oveq1 5899 . . . . . 6 (𝑥 = 0 → (𝑥 𝐵) = (0 𝐵))
32oveq1d 5907 . . . . 5 (𝑥 = 0 → ((𝑥 𝐵) × 𝐴) = ((0 𝐵) × 𝐴))
42oveq2d 5908 . . . . 5 (𝑥 = 0 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (0 𝐵)))
53, 4eqeq12d 2204 . . . 4 (𝑥 = 0 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵))))
65imbi2d 230 . . 3 (𝑥 = 0 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))))
7 oveq1 5899 . . . . . 6 (𝑥 = 𝑦 → (𝑥 𝐵) = (𝑦 𝐵))
87oveq1d 5907 . . . . 5 (𝑥 = 𝑦 → ((𝑥 𝐵) × 𝐴) = ((𝑦 𝐵) × 𝐴))
97oveq2d 5908 . . . . 5 (𝑥 = 𝑦 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝑦 𝐵)))
108, 9eqeq12d 2204 . . . 4 (𝑥 = 𝑦 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))))
1110imbi2d 230 . . 3 (𝑥 = 𝑦 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)))))
12 oveq1 5899 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝑥 𝐵) = ((𝑦 + 1) 𝐵))
1312oveq1d 5907 . . . . 5 (𝑥 = (𝑦 + 1) → ((𝑥 𝐵) × 𝐴) = (((𝑦 + 1) 𝐵) × 𝐴))
1412oveq2d 5908 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴 × (𝑥 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
1513, 14eqeq12d 2204 . . . 4 (𝑥 = (𝑦 + 1) → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
1615imbi2d 230 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
17 oveq1 5899 . . . . . 6 (𝑥 = 𝐾 → (𝑥 𝐵) = (𝐾 𝐵))
1817oveq1d 5907 . . . . 5 (𝑥 = 𝐾 → ((𝑥 𝐵) × 𝐴) = ((𝐾 𝐵) × 𝐴))
1917oveq2d 5908 . . . . 5 (𝑥 = 𝐾 → (𝐴 × (𝑥 𝐵)) = (𝐴 × (𝐾 𝐵)))
2018, 19eqeq12d 2204 . . . 4 (𝑥 = 𝐾 → (((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵)) ↔ ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
2120imbi2d 230 . . 3 (𝑥 = 𝐾 → ((𝜑 → ((𝑥 𝐵) × 𝐴) = (𝐴 × (𝑥 𝐵))) ↔ (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))))
22 srgpcomp.b . . . . . . . 8 (𝜑𝐵𝑆)
23 srgpcomp.r . . . . . . . . 9 (𝜑𝑅 ∈ SRing)
24 srgpcomp.g . . . . . . . . . 10 𝐺 = (mulGrp‘𝑅)
25 srgpcomp.s . . . . . . . . . 10 𝑆 = (Base‘𝑅)
2624, 25mgpbasg 13248 . . . . . . . . 9 (𝑅 ∈ SRing → 𝑆 = (Base‘𝐺))
2723, 26syl 14 . . . . . . . 8 (𝜑𝑆 = (Base‘𝐺))
2822, 27eleqtrd 2268 . . . . . . 7 (𝜑𝐵 ∈ (Base‘𝐺))
29 eqid 2189 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
30 eqid 2189 . . . . . . . 8 (0g𝐺) = (0g𝐺)
31 srgpcomp.e . . . . . . . 8 = (.g𝐺)
3229, 30, 31mulg0 13040 . . . . . . 7 (𝐵 ∈ (Base‘𝐺) → (0 𝐵) = (0g𝐺))
3328, 32syl 14 . . . . . 6 (𝜑 → (0 𝐵) = (0g𝐺))
34 eqid 2189 . . . . . . . 8 (1r𝑅) = (1r𝑅)
3524, 34ringidvalg 13283 . . . . . . 7 (𝑅 ∈ SRing → (1r𝑅) = (0g𝐺))
3623, 35syl 14 . . . . . 6 (𝜑 → (1r𝑅) = (0g𝐺))
3733, 36eqtr4d 2225 . . . . 5 (𝜑 → (0 𝐵) = (1r𝑅))
3837oveq1d 5907 . . . 4 (𝜑 → ((0 𝐵) × 𝐴) = ((1r𝑅) × 𝐴))
39 srgpcomp.a . . . . . 6 (𝜑𝐴𝑆)
40 srgpcomp.m . . . . . . 7 × = (.r𝑅)
4125, 40, 34srgridm 13302 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → (𝐴 × (1r𝑅)) = 𝐴)
4223, 39, 41syl2anc 411 . . . . 5 (𝜑 → (𝐴 × (1r𝑅)) = 𝐴)
4337oveq2d 5908 . . . . 5 (𝜑 → (𝐴 × (0 𝐵)) = (𝐴 × (1r𝑅)))
4425, 40, 34srglidm 13301 . . . . . 6 ((𝑅 ∈ SRing ∧ 𝐴𝑆) → ((1r𝑅) × 𝐴) = 𝐴)
4523, 39, 44syl2anc 411 . . . . 5 (𝜑 → ((1r𝑅) × 𝐴) = 𝐴)
4642, 43, 453eqtr4rd 2233 . . . 4 (𝜑 → ((1r𝑅) × 𝐴) = (𝐴 × (0 𝐵)))
4738, 46eqtrd 2222 . . 3 (𝜑 → ((0 𝐵) × 𝐴) = (𝐴 × (0 𝐵)))
4824srgmgp 13290 . . . . . . . . . . . . . 14 (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
4923, 48syl 14 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ Mnd)
5049adantr 276 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → 𝐺 ∈ Mnd)
51 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
5222adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ0) → 𝐵𝑆)
5327adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℕ0) → 𝑆 = (Base‘𝐺))
5452, 53eleqtrd 2268 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → 𝐵 ∈ (Base‘𝐺))
55 eqid 2189 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
5629, 31, 55mulgnn0p1 13046 . . . . . . . . . . . 12 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵))
5750, 51, 54, 56syl3anc 1249 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵))
5824, 40mgpplusgg 13246 . . . . . . . . . . . . . . 15 (𝑅 ∈ SRing → × = (+g𝐺))
5923, 58syl 14 . . . . . . . . . . . . . 14 (𝜑× = (+g𝐺))
6059oveqd 5909 . . . . . . . . . . . . 13 (𝜑 → ((𝑦 𝐵) × 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵))
6160eqeq2d 2201 . . . . . . . . . . . 12 (𝜑 → (((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵)))
6261adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵) ↔ ((𝑦 + 1) 𝐵) = ((𝑦 𝐵)(+g𝐺)𝐵)))
6357, 62mpbird 167 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 + 1) 𝐵) = ((𝑦 𝐵) × 𝐵))
6463oveq1d 5907 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐵) × 𝐴))
65 srgpcomp.c . . . . . . . . . . . . 13 (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))
6665eqcomd 2195 . . . . . . . . . . . 12 (𝜑 → (𝐵 × 𝐴) = (𝐴 × 𝐵))
6766adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝐵 × 𝐴) = (𝐴 × 𝐵))
6867oveq2d 5908 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × (𝐵 × 𝐴)) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
6923adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝑅 ∈ SRing)
7029, 31mulgnn0cl 13051 . . . . . . . . . . . . 13 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐵 ∈ (Base‘𝐺)) → (𝑦 𝐵) ∈ (Base‘𝐺))
7150, 51, 54, 70syl3anc 1249 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℕ0) → (𝑦 𝐵) ∈ (Base‘𝐺))
7271, 53eleqtrrd 2269 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → (𝑦 𝐵) ∈ 𝑆)
7339adantr 276 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℕ0) → 𝐴𝑆)
7425, 40srgass 13293 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐵𝑆𝐴𝑆)) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
7569, 72, 52, 73, 74syl13anc 1251 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = ((𝑦 𝐵) × (𝐵 × 𝐴)))
7625, 40srgass 13293 . . . . . . . . . . 11 ((𝑅 ∈ SRing ∧ ((𝑦 𝐵) ∈ 𝑆𝐴𝑆𝐵𝑆)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
7769, 72, 73, 52, 76syl13anc 1251 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝑦 𝐵) × (𝐴 × 𝐵)))
7868, 75, 773eqtr4d 2232 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
7964, 78eqtrd 2222 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
8079adantr 276 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (((𝑦 𝐵) × 𝐴) × 𝐵))
81 oveq1 5899 . . . . . . . 8 (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 𝐵) × 𝐴) × 𝐵) = ((𝐴 × (𝑦 𝐵)) × 𝐵))
8225, 40srgass 13293 . . . . . . . . . 10 ((𝑅 ∈ SRing ∧ (𝐴𝑆 ∧ (𝑦 𝐵) ∈ 𝑆𝐵𝑆)) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
8369, 73, 72, 52, 82syl13anc 1251 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 𝐵) × 𝐵)))
8463eqcomd 2195 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℕ0) → ((𝑦 𝐵) × 𝐵) = ((𝑦 + 1) 𝐵))
8584oveq2d 5908 . . . . . . . . 9 ((𝜑𝑦 ∈ ℕ0) → (𝐴 × ((𝑦 𝐵) × 𝐵)) = (𝐴 × ((𝑦 + 1) 𝐵)))
8683, 85eqtrd 2222 . . . . . . . 8 ((𝜑𝑦 ∈ ℕ0) → ((𝐴 × (𝑦 𝐵)) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
8781, 86sylan9eqr 2244 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 𝐵) × 𝐴) × 𝐵) = (𝐴 × ((𝑦 + 1) 𝐵)))
8880, 87eqtrd 2222 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))
8988ex 115 . . . . 5 ((𝜑𝑦 ∈ ℕ0) → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵))))
9089expcom 116 . . . 4 (𝑦 ∈ ℕ0 → (𝜑 → (((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵)) → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
9190a2d 26 . . 3 (𝑦 ∈ ℕ0 → ((𝜑 → ((𝑦 𝐵) × 𝐴) = (𝐴 × (𝑦 𝐵))) → (𝜑 → (((𝑦 + 1) 𝐵) × 𝐴) = (𝐴 × ((𝑦 + 1) 𝐵)))))
926, 11, 16, 21, 47, 91nn0ind 9387 . 2 (𝐾 ∈ ℕ0 → (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵))))
931, 92mpcom 36 1 (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  cfv 5232  (class class class)co 5892  0cc0 7831  1c1 7832   + caddc 7834  0cn0 9196  Basecbs 12487  +gcplusg 12562  .rcmulr 12563  0gc0g 12734  Mndcmnd 12850  .gcmg 13034  mulGrpcmgp 13242  1rcur 13281  SRingcsrg 13285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-addcom 7931  ax-addass 7933  ax-distr 7935  ax-i2m1 7936  ax-0lt1 7937  ax-0id 7939  ax-rnegex 7940  ax-cnre 7942  ax-pre-ltirr 7943  ax-pre-ltwlin 7944  ax-pre-lttrn 7945  ax-pre-ltadd 7947
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-frec 6411  df-pnf 8014  df-mnf 8015  df-xr 8016  df-ltxr 8017  df-le 8018  df-sub 8150  df-neg 8151  df-inn 8940  df-2 8998  df-3 8999  df-n0 9197  df-z 9274  df-uz 9549  df-seqfrec 10466  df-ndx 12490  df-slot 12491  df-base 12493  df-sets 12494  df-plusg 12575  df-mulr 12576  df-0g 12736  df-mgm 12805  df-sgrp 12838  df-mnd 12851  df-minusg 12922  df-mulg 13035  df-mgp 13243  df-ur 13282  df-srg 13286
This theorem is referenced by:  srgpcompp  13313
  Copyright terms: Public domain W3C validator