Proof of Theorem prmdiveq
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpl1 1002 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℙ) | 
| 2 |   | prmz 12279 | 
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) | 
| 3 | 1, 2 | syl 14 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℤ) | 
| 4 |   | simpl2 1003 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℤ) | 
| 5 |   | elfzelz 10100 | 
. . . . . . . . . . 11
⊢ (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈ ℤ) | 
| 6 | 5 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℤ) | 
| 7 | 4, 6 | zmulcld 9454 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℤ) | 
| 8 |   | 1z 9352 | 
. . . . . . . . 9
⊢ 1 ∈
ℤ | 
| 9 |   | zsubcl 9367 | 
. . . . . . . . 9
⊢ (((𝐴 · 𝑆) ∈ ℤ ∧ 1 ∈ ℤ)
→ ((𝐴 · 𝑆) − 1) ∈
ℤ) | 
| 10 | 7, 8, 9 | sylancl 413 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑆) − 1) ∈
ℤ) | 
| 11 |   | prmdiv.1 | 
. . . . . . . . . . . . . 14
⊢ 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃) | 
| 12 | 11 | prmdiv 12403 | 
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) | 
| 13 | 12 | adantr 276 | 
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) | 
| 14 | 13 | simpld 112 | 
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ (1...(𝑃 − 1))) | 
| 15 |   | elfzelz 10100 | 
. . . . . . . . . . 11
⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ ℤ) | 
| 16 | 14, 15 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℤ) | 
| 17 | 4, 16 | zmulcld 9454 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℤ) | 
| 18 |   | zsubcl 9367 | 
. . . . . . . . 9
⊢ (((𝐴 · 𝑅) ∈ ℤ ∧ 1 ∈ ℤ)
→ ((𝐴 · 𝑅) − 1) ∈
ℤ) | 
| 19 | 17, 8, 18 | sylancl 413 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝐴 · 𝑅) − 1) ∈
ℤ) | 
| 20 |   | simprr 531 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑆) − 1)) | 
| 21 | 13 | simprd 114 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ ((𝐴 · 𝑅) − 1)) | 
| 22 | 3, 10, 19, 20, 21 | dvds2subd 11992 | 
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1))) | 
| 23 | 7 | zcnd 9449 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑆) ∈ ℂ) | 
| 24 | 17 | zcnd 9449 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · 𝑅) ∈ ℂ) | 
| 25 |   | 1cnd 8042 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 1 ∈
ℂ) | 
| 26 | 23, 24, 25 | nnncan2d 8372 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅))) | 
| 27 | 4 | zcnd 9449 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝐴 ∈ ℂ) | 
| 28 |   | elfznn0 10189 | 
. . . . . . . . . . 11
⊢ (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ∈
ℕ0) | 
| 29 | 28 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈
ℕ0) | 
| 30 | 29 | nn0cnd 9304 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℂ) | 
| 31 | 16 | zcnd 9449 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑅 ∈ ℂ) | 
| 32 | 27, 30, 31 | subdid 8440 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴 · (𝑆 − 𝑅)) = ((𝐴 · 𝑆) − (𝐴 · 𝑅))) | 
| 33 | 26, 32 | eqtr4d 2232 | 
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴 · 𝑆) − 1) − ((𝐴 · 𝑅) − 1)) = (𝐴 · (𝑆 − 𝑅))) | 
| 34 | 22, 33 | breqtrd 4059 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝐴 · (𝑆 − 𝑅))) | 
| 35 |   | simpl3 1004 | 
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ¬ 𝑃 ∥ 𝐴) | 
| 36 |   | coprm 12312 | 
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬
𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | 
| 37 | 1, 4, 36 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (¬ 𝑃 ∥ 𝐴 ↔ (𝑃 gcd 𝐴) = 1)) | 
| 38 | 35, 37 | mpbid 147 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 gcd 𝐴) = 1) | 
| 39 | 6, 16 | zsubcld 9453 | 
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 − 𝑅) ∈ ℤ) | 
| 40 |   | coprmdvds 12260 | 
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝑆 − 𝑅) ∈ ℤ) → ((𝑃 ∥ (𝐴 · (𝑆 − 𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆 − 𝑅))) | 
| 41 | 3, 4, 39, 40 | syl3anc 1249 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑃 ∥ (𝐴 · (𝑆 − 𝑅)) ∧ (𝑃 gcd 𝐴) = 1) → 𝑃 ∥ (𝑆 − 𝑅))) | 
| 42 | 34, 38, 41 | mp2and 433 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∥ (𝑆 − 𝑅)) | 
| 43 |   | prmnn 12278 | 
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 44 | 1, 43 | syl 14 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℕ) | 
| 45 |   | moddvds 11964 | 
. . . . . 6
⊢ ((𝑃 ∈ ℕ ∧ 𝑆 ∈ ℤ ∧ 𝑅 ∈ ℤ) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆 − 𝑅))) | 
| 46 | 44, 6, 16, 45 | syl3anc 1249 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → ((𝑆 mod 𝑃) = (𝑅 mod 𝑃) ↔ 𝑃 ∥ (𝑆 − 𝑅))) | 
| 47 | 42, 46 | mpbird 167 | 
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = (𝑅 mod 𝑃)) | 
| 48 |   | zq 9700 | 
. . . . . 6
⊢ (𝑆 ∈ ℤ → 𝑆 ∈
ℚ) | 
| 49 | 6, 48 | syl 14 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ∈ ℚ) | 
| 50 |   | nnq 9707 | 
. . . . . 6
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℚ) | 
| 51 | 44, 50 | syl 14 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑃 ∈ ℚ) | 
| 52 |   | elfzle1 10102 | 
. . . . . 6
⊢ (𝑆 ∈ (0...(𝑃 − 1)) → 0 ≤ 𝑆) | 
| 53 | 52 | ad2antrl 490 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 0 ≤ 𝑆) | 
| 54 |   | elfzle2 10103 | 
. . . . . . 7
⊢ (𝑆 ∈ (0...(𝑃 − 1)) → 𝑆 ≤ (𝑃 − 1)) | 
| 55 | 54 | ad2antrl 490 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 ≤ (𝑃 − 1)) | 
| 56 |   | zltlem1 9383 | 
. . . . . . 7
⊢ ((𝑆 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑆 < 𝑃 ↔ 𝑆 ≤ (𝑃 − 1))) | 
| 57 | 6, 3, 56 | syl2anc 411 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 < 𝑃 ↔ 𝑆 ≤ (𝑃 − 1))) | 
| 58 | 55, 57 | mpbird 167 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 < 𝑃) | 
| 59 |   | modqid 10441 | 
. . . . 5
⊢ (((𝑆 ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤
𝑆 ∧ 𝑆 < 𝑃)) → (𝑆 mod 𝑃) = 𝑆) | 
| 60 | 49, 51, 53, 58, 59 | syl22anc 1250 | 
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑆 mod 𝑃) = 𝑆) | 
| 61 |   | prmuz2 12299 | 
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) | 
| 62 |   | uznn0sub 9633 | 
. . . . . . . . 9
⊢ (𝑃 ∈
(ℤ≥‘2) → (𝑃 − 2) ∈
ℕ0) | 
| 63 | 1, 61, 62 | 3syl 17 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑃 − 2) ∈
ℕ0) | 
| 64 |   | zexpcl 10646 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈
ℕ0) → (𝐴↑(𝑃 − 2)) ∈
ℤ) | 
| 65 | 4, 63, 64 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈
ℤ) | 
| 66 |   | zq 9700 | 
. . . . . . 7
⊢ ((𝐴↑(𝑃 − 2)) ∈ ℤ → (𝐴↑(𝑃 − 2)) ∈
ℚ) | 
| 67 | 65, 66 | syl 14 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝐴↑(𝑃 − 2)) ∈
ℚ) | 
| 68 | 44 | nngt0d 9034 | 
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 0 < 𝑃) | 
| 69 |   | modqabs2 10450 | 
. . . . . 6
⊢ (((𝐴↑(𝑃 − 2)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 <
𝑃) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)) | 
| 70 | 67, 51, 68, 69 | syl3anc 1249 | 
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)) | 
| 71 | 11 | oveq1i 5932 | 
. . . . 5
⊢ (𝑅 mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) | 
| 72 | 70, 71, 11 | 3eqtr4g 2254 | 
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → (𝑅 mod 𝑃) = 𝑅) | 
| 73 | 47, 60, 72 | 3eqtr3d 2237 | 
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) ∧ (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1))) → 𝑆 = 𝑅) | 
| 74 | 73 | ex 115 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) → 𝑆 = 𝑅)) | 
| 75 |   | fz1ssfz0 10192 | 
. . . . . 6
⊢
(1...(𝑃 − 1))
⊆ (0...(𝑃 −
1)) | 
| 76 | 75 | sseli 3179 | 
. . . . 5
⊢ (𝑅 ∈ (1...(𝑃 − 1)) → 𝑅 ∈ (0...(𝑃 − 1))) | 
| 77 |   | eleq1 2259 | 
. . . . 5
⊢ (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ↔ 𝑅 ∈ (0...(𝑃 − 1)))) | 
| 78 | 76, 77 | imbitrrid 156 | 
. . . 4
⊢ (𝑆 = 𝑅 → (𝑅 ∈ (1...(𝑃 − 1)) → 𝑆 ∈ (0...(𝑃 − 1)))) | 
| 79 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑆 = 𝑅 → (𝐴 · 𝑆) = (𝐴 · 𝑅)) | 
| 80 | 79 | oveq1d 5937 | 
. . . . . 6
⊢ (𝑆 = 𝑅 → ((𝐴 · 𝑆) − 1) = ((𝐴 · 𝑅) − 1)) | 
| 81 | 80 | breq2d 4045 | 
. . . . 5
⊢ (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑆) − 1) ↔ 𝑃 ∥ ((𝐴 · 𝑅) − 1))) | 
| 82 | 81 | biimprd 158 | 
. . . 4
⊢ (𝑆 = 𝑅 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) → 𝑃 ∥ ((𝐴 · 𝑆) − 1))) | 
| 83 | 78, 82 | anim12d 335 | 
. . 3
⊢ (𝑆 = 𝑅 → ((𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)) → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)))) | 
| 84 | 12, 83 | syl5com 29 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) → (𝑆 = 𝑅 → (𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)))) | 
| 85 | 74, 84 | impbid 129 | 
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬
𝑃 ∥ 𝐴) → ((𝑆 ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑆) − 1)) ↔ 𝑆 = 𝑅)) |