MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss2 Structured version   Visualization version   GIF version

Theorem clsss2 22982
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)

Proof of Theorem clsss2
StepHypRef Expression
1 cldrcl 22936 . . . 4 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
21adantr 480 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝐽 ∈ Top)
3 clscld.1 . . . . 5 𝑋 = 𝐽
43cldss 22939 . . . 4 (𝐶 ∈ (Clsd‘𝐽) → 𝐶𝑋)
54adantr 480 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝐶𝑋)
6 simpr 484 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝑆𝐶)
73clsss 22964 . . 3 ((𝐽 ∈ Top ∧ 𝐶𝑋𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶))
82, 5, 6, 7syl3anc 1373 . 2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶))
9 cldcls 22952 . . 3 (𝐶 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐶) = 𝐶)
109adantr 480 . 2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝐶) = 𝐶)
118, 10sseqtrd 3966 1 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897   cuni 4854  cfv 6476  Topctop 22803  Clsdccld 22926  clsccl 22928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-top 22804  df-cld 22929  df-cls 22931
This theorem is referenced by:  elcls  22983  restcls  23091  cncls2i  23180  isnrm3  23269  lpcls  23274  isreg2  23287  dnsconst  23288  hauscmplem  23316  txcls  23514  ptclsg  23525  kqreglem1  23651  kqreglem2  23652  kqnrmlem1  23653  kqnrmlem2  23654  blcls  24416  clsocv  25172  resscdrg  25280  cldregopn  36365  seposep  48957
  Copyright terms: Public domain W3C validator