Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clsss2 | Structured version Visualization version GIF version |
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss2 | ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22186 | . . . 4 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝐽 ∈ Top) |
3 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | cldss 22189 | . . . 4 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ 𝑋) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝐶 ⊆ 𝑋) |
6 | simpr 485 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ⊆ 𝐶) | |
7 | 3 | clsss 22214 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶)) |
8 | 2, 5, 6, 7 | syl3anc 1370 | . 2 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶)) |
9 | cldcls 22202 | . . 3 ⊢ (𝐶 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐶) = 𝐶) | |
10 | 9 | adantr 481 | . 2 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝐶) = 𝐶) |
11 | 8, 10 | sseqtrd 3962 | 1 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 ∪ cuni 4840 ‘cfv 6437 Topctop 22051 Clsdccld 22176 clsccl 22178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-top 22052 df-cld 22179 df-cls 22181 |
This theorem is referenced by: elcls 22233 restcls 22341 cncls2i 22430 isnrm3 22519 lpcls 22524 isreg2 22537 dnsconst 22538 hauscmplem 22566 txcls 22764 ptclsg 22775 kqreglem1 22901 kqreglem2 22902 kqnrmlem1 22903 kqnrmlem2 22904 blcls 23671 clsocv 24423 resscdrg 24531 cldregopn 34529 seposep 46230 |
Copyright terms: Public domain | W3C validator |