MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss2 Structured version   Visualization version   GIF version

Theorem clsss2 22957
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)

Proof of Theorem clsss2
StepHypRef Expression
1 cldrcl 22911 . . . 4 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
21adantr 480 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝐽 ∈ Top)
3 clscld.1 . . . . 5 𝑋 = 𝐽
43cldss 22914 . . . 4 (𝐶 ∈ (Clsd‘𝐽) → 𝐶𝑋)
54adantr 480 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝐶𝑋)
6 simpr 484 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝑆𝐶)
73clsss 22939 . . 3 ((𝐽 ∈ Top ∧ 𝐶𝑋𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶))
82, 5, 6, 7syl3anc 1373 . 2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶))
9 cldcls 22927 . . 3 (𝐶 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐶) = 𝐶)
109adantr 480 . 2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝐶) = 𝐶)
118, 10sseqtrd 3972 1 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903   cuni 4858  cfv 6482  Topctop 22778  Clsdccld 22901  clsccl 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-top 22779  df-cld 22904  df-cls 22906
This theorem is referenced by:  elcls  22958  restcls  23066  cncls2i  23155  isnrm3  23244  lpcls  23249  isreg2  23262  dnsconst  23263  hauscmplem  23291  txcls  23489  ptclsg  23500  kqreglem1  23626  kqreglem2  23627  kqnrmlem1  23628  kqnrmlem2  23629  blcls  24392  clsocv  25148  resscdrg  25256  cldregopn  36305  seposep  48910
  Copyright terms: Public domain W3C validator