MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss2 Structured version   Visualization version   GIF version

Theorem clsss2 23010
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)

Proof of Theorem clsss2
StepHypRef Expression
1 cldrcl 22964 . . . 4 (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
21adantr 480 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝐽 ∈ Top)
3 clscld.1 . . . . 5 𝑋 = 𝐽
43cldss 22967 . . . 4 (𝐶 ∈ (Clsd‘𝐽) → 𝐶𝑋)
54adantr 480 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝐶𝑋)
6 simpr 484 . . 3 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → 𝑆𝐶)
73clsss 22992 . . 3 ((𝐽 ∈ Top ∧ 𝐶𝑋𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶))
82, 5, 6, 7syl3anc 1373 . 2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶))
9 cldcls 22980 . . 3 (𝐶 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐶) = 𝐶)
109adantr 480 . 2 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝐶) = 𝐶)
118, 10sseqtrd 3995 1 ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926   cuni 4883  cfv 6531  Topctop 22831  Clsdccld 22954  clsccl 22956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-top 22832  df-cld 22957  df-cls 22959
This theorem is referenced by:  elcls  23011  restcls  23119  cncls2i  23208  isnrm3  23297  lpcls  23302  isreg2  23315  dnsconst  23316  hauscmplem  23344  txcls  23542  ptclsg  23553  kqreglem1  23679  kqreglem2  23680  kqnrmlem1  23681  kqnrmlem2  23682  blcls  24445  clsocv  25202  resscdrg  25310  cldregopn  36349  seposep  48900
  Copyright terms: Public domain W3C validator