Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clsss2 | Structured version Visualization version GIF version |
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss2 | ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22158 | . . . 4 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝐽 ∈ Top) |
3 | clscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | cldss 22161 | . . . 4 ⊢ (𝐶 ∈ (Clsd‘𝐽) → 𝐶 ⊆ 𝑋) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝐶 ⊆ 𝑋) |
6 | simpr 484 | . . 3 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → 𝑆 ⊆ 𝐶) | |
7 | 3 | clsss 22186 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐶 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶)) |
8 | 2, 5, 6, 7 | syl3anc 1369 | . 2 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝐶)) |
9 | cldcls 22174 | . . 3 ⊢ (𝐶 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝐶) = 𝐶) | |
10 | 9 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝐶) = 𝐶) |
11 | 8, 10 | sseqtrd 3965 | 1 ⊢ ((𝐶 ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ 𝐶) → ((cls‘𝐽)‘𝑆) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ∪ cuni 4844 ‘cfv 6430 Topctop 22023 Clsdccld 22148 clsccl 22150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-top 22024 df-cld 22151 df-cls 22153 |
This theorem is referenced by: elcls 22205 restcls 22313 cncls2i 22402 isnrm3 22491 lpcls 22496 isreg2 22509 dnsconst 22510 hauscmplem 22538 txcls 22736 ptclsg 22747 kqreglem1 22873 kqreglem2 22874 kqnrmlem1 22875 kqnrmlem2 22876 blcls 23643 clsocv 24395 resscdrg 24503 cldregopn 34499 seposep 46171 |
Copyright terms: Public domain | W3C validator |