| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arympt | Structured version Visualization version GIF version | ||
| Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
| Ref | Expression |
|---|---|
| 2arympt.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) |
| Ref | Expression |
|---|---|
| 2arympt | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → 𝑂:(𝑋 × 𝑋)⟶𝑋) | |
| 2 | elmapi 8871 | . . . . . 6 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → 𝑥:{0, 1}⟶𝑋) | |
| 3 | c0ex 11237 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 4 | 3 | prid1 4742 | . . . . . . 7 ⊢ 0 ∈ {0, 1} |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → 0 ∈ {0, 1}) |
| 6 | 2, 5 | ffvelcdmd 7085 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → (𝑥‘0) ∈ 𝑋) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → (𝑥‘0) ∈ 𝑋) |
| 8 | 1ex 11239 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 9 | 8 | prid2 4743 | . . . . . . 7 ⊢ 1 ∈ {0, 1} |
| 10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → 1 ∈ {0, 1}) |
| 11 | 2, 10 | ffvelcdmd 7085 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → (𝑥‘1) ∈ 𝑋) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → (𝑥‘1) ∈ 𝑋) |
| 13 | 1, 7, 12 | fovcdmd 7587 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → ((𝑥‘0)𝑂(𝑥‘1)) ∈ 𝑋) |
| 14 | 2arympt.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) | |
| 15 | 13, 14 | fmptd 7114 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹:(𝑋 ↑m {0, 1})⟶𝑋) |
| 16 | 2aryfvalel 48526 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0, 1})⟶𝑋)) | |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0, 1})⟶𝑋)) |
| 18 | 15, 17 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cpr 4608 ↦ cmpt 5205 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 0cc0 11137 1c1 11138 2c2 12303 -aryF cnaryf 48505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-fzo 13677 df-naryf 48506 |
| This theorem is referenced by: 2arymaptfo 48533 |
| Copyright terms: Public domain | W3C validator |