Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arympt Structured version   Visualization version   GIF version

Theorem 2arympt 48528
Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.)
Hypothesis
Ref Expression
2arympt.f 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
Assertion
Ref Expression
2arympt ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 2arympt
StepHypRef Expression
1 simplr 768 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → 𝑂:(𝑋 × 𝑋)⟶𝑋)
2 elmapi 8871 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 𝑥:{0, 1}⟶𝑋)
3 c0ex 11237 . . . . . . . 8 0 ∈ V
43prid1 4742 . . . . . . 7 0 ∈ {0, 1}
54a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 0 ∈ {0, 1})
62, 5ffvelcdmd 7085 . . . . 5 (𝑥 ∈ (𝑋m {0, 1}) → (𝑥‘0) ∈ 𝑋)
76adantl 481 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → (𝑥‘0) ∈ 𝑋)
8 1ex 11239 . . . . . . . 8 1 ∈ V
98prid2 4743 . . . . . . 7 1 ∈ {0, 1}
109a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 1 ∈ {0, 1})
112, 10ffvelcdmd 7085 . . . . 5 (𝑥 ∈ (𝑋m {0, 1}) → (𝑥‘1) ∈ 𝑋)
1211adantl 481 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → (𝑥‘1) ∈ 𝑋)
131, 7, 12fovcdmd 7587 . . 3 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → ((𝑥‘0)𝑂(𝑥‘1)) ∈ 𝑋)
14 2arympt.f . . 3 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
1513, 14fmptd 7114 . 2 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹:(𝑋m {0, 1})⟶𝑋)
16 2aryfvalel 48526 . . 3 (𝑋𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋m {0, 1})⟶𝑋))
1716adantr 480 . 2 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋m {0, 1})⟶𝑋))
1815, 17mpbird 257 1 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cpr 4608  cmpt 5205   × cxp 5663  wf 6537  cfv 6541  (class class class)co 7413  m cmap 8848  0cc0 11137  1c1 11138  2c2 12303  -aryF cnaryf 48505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-fzo 13677  df-naryf 48506
This theorem is referenced by:  2arymaptfo  48533
  Copyright terms: Public domain W3C validator