Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arympt | Structured version Visualization version GIF version |
Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.) |
Ref | Expression |
---|---|
2arympt.f | ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) |
Ref | Expression |
---|---|
2arympt | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 766 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → 𝑂:(𝑋 × 𝑋)⟶𝑋) | |
2 | elmapi 8646 | . . . . . 6 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → 𝑥:{0, 1}⟶𝑋) | |
3 | c0ex 10978 | . . . . . . . 8 ⊢ 0 ∈ V | |
4 | 3 | prid1 4699 | . . . . . . 7 ⊢ 0 ∈ {0, 1} |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → 0 ∈ {0, 1}) |
6 | 2, 5 | ffvelrnd 6971 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → (𝑥‘0) ∈ 𝑋) |
7 | 6 | adantl 482 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → (𝑥‘0) ∈ 𝑋) |
8 | 1ex 10980 | . . . . . . . 8 ⊢ 1 ∈ V | |
9 | 8 | prid2 4700 | . . . . . . 7 ⊢ 1 ∈ {0, 1} |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → 1 ∈ {0, 1}) |
11 | 2, 10 | ffvelrnd 6971 | . . . . 5 ⊢ (𝑥 ∈ (𝑋 ↑m {0, 1}) → (𝑥‘1) ∈ 𝑋) |
12 | 11 | adantl 482 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → (𝑥‘1) ∈ 𝑋) |
13 | 1, 7, 12 | fovrnd 7453 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋 ↑m {0, 1})) → ((𝑥‘0)𝑂(𝑥‘1)) ∈ 𝑋) |
14 | 2arympt.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ (𝑋 ↑m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1))) | |
15 | 13, 14 | fmptd 6997 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹:(𝑋 ↑m {0, 1})⟶𝑋) |
16 | 2aryfvalel 46004 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0, 1})⟶𝑋)) | |
17 | 16 | adantr 481 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m {0, 1})⟶𝑋)) |
18 | 15, 17 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 {cpr 4564 ↦ cmpt 5158 × cxp 5588 ⟶wf 6433 ‘cfv 6437 (class class class)co 7284 ↑m cmap 8624 0cc0 10880 1c1 10881 2c2 12037 -aryF cnaryf 45983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-map 8626 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-2 12045 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 df-naryf 45984 |
This theorem is referenced by: 2arymaptfo 46011 |
Copyright terms: Public domain | W3C validator |