Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arympt Structured version   Visualization version   GIF version

Theorem 2arympt 46006
Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.)
Hypothesis
Ref Expression
2arympt.f 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
Assertion
Ref Expression
2arympt ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 2arympt
StepHypRef Expression
1 simplr 766 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → 𝑂:(𝑋 × 𝑋)⟶𝑋)
2 elmapi 8646 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 𝑥:{0, 1}⟶𝑋)
3 c0ex 10978 . . . . . . . 8 0 ∈ V
43prid1 4699 . . . . . . 7 0 ∈ {0, 1}
54a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 0 ∈ {0, 1})
62, 5ffvelrnd 6971 . . . . 5 (𝑥 ∈ (𝑋m {0, 1}) → (𝑥‘0) ∈ 𝑋)
76adantl 482 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → (𝑥‘0) ∈ 𝑋)
8 1ex 10980 . . . . . . . 8 1 ∈ V
98prid2 4700 . . . . . . 7 1 ∈ {0, 1}
109a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 1 ∈ {0, 1})
112, 10ffvelrnd 6971 . . . . 5 (𝑥 ∈ (𝑋m {0, 1}) → (𝑥‘1) ∈ 𝑋)
1211adantl 482 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → (𝑥‘1) ∈ 𝑋)
131, 7, 12fovrnd 7453 . . 3 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → ((𝑥‘0)𝑂(𝑥‘1)) ∈ 𝑋)
14 2arympt.f . . 3 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
1513, 14fmptd 6997 . 2 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹:(𝑋m {0, 1})⟶𝑋)
16 2aryfvalel 46004 . . 3 (𝑋𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋m {0, 1})⟶𝑋))
1716adantr 481 . 2 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋m {0, 1})⟶𝑋))
1815, 17mpbird 256 1 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2107  {cpr 4564  cmpt 5158   × cxp 5588  wf 6433  cfv 6437  (class class class)co 7284  m cmap 8624  0cc0 10880  1c1 10881  2c2 12037  -aryF cnaryf 45983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-map 8626  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249  df-fzo 13392  df-naryf 45984
This theorem is referenced by:  2arymaptfo  46011
  Copyright terms: Public domain W3C validator