Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arympt Structured version   Visualization version   GIF version

Theorem 2arympt 45104
 Description: A binary (endo)function in maps-to notation. (Contributed by AV, 20-May-2024.)
Hypothesis
Ref Expression
2arympt.f 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
Assertion
Ref Expression
2arympt ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem 2arympt
StepHypRef Expression
1 simplr 768 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → 𝑂:(𝑋 × 𝑋)⟶𝑋)
2 elmapi 8414 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 𝑥:{0, 1}⟶𝑋)
3 c0ex 10627 . . . . . . . 8 0 ∈ V
43prid1 4658 . . . . . . 7 0 ∈ {0, 1}
54a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 0 ∈ {0, 1})
62, 5ffvelrnd 6830 . . . . 5 (𝑥 ∈ (𝑋m {0, 1}) → (𝑥‘0) ∈ 𝑋)
76adantl 485 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → (𝑥‘0) ∈ 𝑋)
8 1ex 10629 . . . . . . . 8 1 ∈ V
98prid2 4659 . . . . . . 7 1 ∈ {0, 1}
109a1i 11 . . . . . 6 (𝑥 ∈ (𝑋m {0, 1}) → 1 ∈ {0, 1})
112, 10ffvelrnd 6830 . . . . 5 (𝑥 ∈ (𝑋m {0, 1}) → (𝑥‘1) ∈ 𝑋)
1211adantl 485 . . . 4 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → (𝑥‘1) ∈ 𝑋)
131, 7, 12fovrnd 7302 . . 3 (((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) ∧ 𝑥 ∈ (𝑋m {0, 1})) → ((𝑥‘0)𝑂(𝑥‘1)) ∈ 𝑋)
14 2arympt.f . . 3 𝐹 = (𝑥 ∈ (𝑋m {0, 1}) ↦ ((𝑥‘0)𝑂(𝑥‘1)))
1513, 14fmptd 6856 . 2 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹:(𝑋m {0, 1})⟶𝑋)
16 2aryfvalel 45102 . . 3 (𝑋𝑉 → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋m {0, 1})⟶𝑋))
1716adantr 484 . 2 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → (𝐹 ∈ (2-aryF 𝑋) ↔ 𝐹:(𝑋m {0, 1})⟶𝑋))
1815, 17mpbird 260 1 ((𝑋𝑉𝑂:(𝑋 × 𝑋)⟶𝑋) → 𝐹 ∈ (2-aryF 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cpr 4527   ↦ cmpt 5111   × cxp 5518  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ↑m cmap 8392  0cc0 10529  1c1 10530  2c2 11683  -aryF cnaryf 45081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-naryf 45082 This theorem is referenced by:  2arymaptfo  45109
 Copyright terms: Public domain W3C validator