![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2llnne2N | Structured version Visualization version GIF version |
Description: Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2lnne.l | ⊢ ≤ = (le‘𝐾) |
2lnne.j | ⊢ ∨ = (join‘𝐾) |
2lnne.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
2llnne2N | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | simprr 771 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
3 | simprl 769 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
4 | 2lnne.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
5 | 2lnne.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
6 | 2lnne.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 4, 5, 6 | hlatlej2 38880 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑃 ≤ (𝑅 ∨ 𝑃)) |
8 | 1, 2, 3, 7 | syl3anc 1368 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ≤ (𝑅 ∨ 𝑃)) |
9 | breq2 5156 | . . . 4 ⊢ ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) → (𝑃 ≤ (𝑅 ∨ 𝑃) ↔ 𝑃 ≤ (𝑅 ∨ 𝑄))) | |
10 | 8, 9 | syl5ibcom 244 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) → 𝑃 ≤ (𝑅 ∨ 𝑄))) |
11 | 10 | necon3bd 2951 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (¬ 𝑃 ≤ (𝑅 ∨ 𝑄) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄))) |
12 | 11 | 3impia 1114 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 lecple 17247 joincjn 18310 Atomscatm 38767 HLchlt 38854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-lub 18345 df-join 18347 df-lat 18431 df-ats 38771 df-atl 38802 df-cvlat 38826 df-hlat 38855 |
This theorem is referenced by: 2llnneN 38914 |
Copyright terms: Public domain | W3C validator |