Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2llnne2N | Structured version Visualization version GIF version |
Description: Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2lnne.l | ⊢ ≤ = (le‘𝐾) |
2lnne.j | ⊢ ∨ = (join‘𝐾) |
2lnne.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
2llnne2N | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) | |
2 | simprr 773 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
3 | simprl 771 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
4 | 2lnne.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
5 | 2lnne.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
6 | 2lnne.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 4, 5, 6 | hlatlej2 37164 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑃 ≤ (𝑅 ∨ 𝑃)) |
8 | 1, 2, 3, 7 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ≤ (𝑅 ∨ 𝑃)) |
9 | breq2 5074 | . . . 4 ⊢ ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) → (𝑃 ≤ (𝑅 ∨ 𝑃) ↔ 𝑃 ≤ (𝑅 ∨ 𝑄))) | |
10 | 8, 9 | syl5ibcom 248 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑅 ∨ 𝑃) = (𝑅 ∨ 𝑄) → 𝑃 ≤ (𝑅 ∨ 𝑄))) |
11 | 10 | necon3bd 2957 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (¬ 𝑃 ≤ (𝑅 ∨ 𝑄) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄))) |
12 | 11 | 3impia 1119 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑅 ∨ 𝑄)) → (𝑅 ∨ 𝑃) ≠ (𝑅 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 class class class wbr 5070 ‘cfv 6401 (class class class)co 7235 lecple 16842 joincjn 17851 Atomscatm 37051 HLchlt 37138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-lub 17885 df-join 17887 df-lat 17971 df-ats 37055 df-atl 37086 df-cvlat 37110 df-hlat 37139 |
This theorem is referenced by: 2llnneN 37197 |
Copyright terms: Public domain | W3C validator |