Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. Special case of latlej2 17737 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | hlatlej1 36951 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
5 | 4 | 3com23 1123 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
6 | 2, 3 | hlatjcom 36944 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
7 | 5, 6 | breqtrrd 5060 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 lecple 16630 joincjn 17620 Atomscatm 36839 HLchlt 36926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-lub 17650 df-join 17652 df-lat 17722 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 |
This theorem is referenced by: 2llnne2N 36984 cvrat3 37018 cvrat4 37019 hlatexch3N 37056 hlatexch4 37057 dalem3 37240 dalem25 37274 lnatexN 37355 lncmp 37359 2llnma3r 37364 paddasslem5 37400 dalawlem3 37449 dalawlem6 37452 dalawlem7 37453 dalawlem12 37458 lhp2atne 37610 lhp2at0ne 37612 4atexlemunv 37642 cdlemc2 37768 cdlemc5 37771 cdleme3h 37811 cdleme7 37825 cdleme9 37829 cdleme11c 37837 cdleme11dN 37838 cdleme11j 37843 cdleme16b 37855 cdleme17b 37863 cdleme18a 37867 cdleme18b 37868 cdleme18c 37869 cdleme19a 37879 cdleme20d 37888 cdleme20j 37894 cdleme21ct 37905 cdleme22a 37916 cdleme22e 37920 cdleme22eALTN 37921 cdleme35b 38026 cdlemg9a 38208 cdlemg12a 38219 cdlemg13a 38227 cdlemg17a 38237 cdlemg17g 38243 cdlemg18c 38256 cdlemg33b0 38277 cdlemg46 38311 cdlemh1 38391 cdlemh 38393 cdlemk4 38410 cdlemki 38417 cdlemksv2 38423 cdlemk12 38426 cdlemk15 38431 cdlemk12u 38448 cdlemkid1 38498 dia2dimlem1 38640 dia2dimlem3 38642 cdlemn10 38782 dihjatcclem1 38994 |
Copyright terms: Public domain | W3C validator |