![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. Special case of latlej2 18398 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | β’ β€ = (leβπΎ) |
hlatlej.j | β’ β¨ = (joinβπΎ) |
hlatlej.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatlej2 | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatlej.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | hlatlej.j | . . . 4 β’ β¨ = (joinβπΎ) | |
3 | hlatlej.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | 1, 2, 3 | hlatlej1 38233 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
5 | 4 | 3com23 1126 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
6 | 2, 3 | hlatjcom 38226 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
7 | 5, 6 | breqtrrd 5175 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 (class class class)co 7405 lecple 17200 joincjn 18260 Atomscatm 38121 HLchlt 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-lub 18295 df-join 18297 df-lat 18381 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 |
This theorem is referenced by: 2llnne2N 38267 cvrat3 38301 cvrat4 38302 hlatexch3N 38339 hlatexch4 38340 dalem3 38523 dalem25 38557 lnatexN 38638 lncmp 38642 2llnma3r 38647 paddasslem5 38683 dalawlem3 38732 dalawlem6 38735 dalawlem7 38736 dalawlem12 38741 lhp2atne 38893 lhp2at0ne 38895 4atexlemunv 38925 cdlemc2 39051 cdlemc5 39054 cdleme3h 39094 cdleme7 39108 cdleme9 39112 cdleme11c 39120 cdleme11dN 39121 cdleme11j 39126 cdleme16b 39138 cdleme17b 39146 cdleme18a 39150 cdleme18b 39151 cdleme18c 39152 cdleme19a 39162 cdleme20d 39171 cdleme20j 39177 cdleme21ct 39188 cdleme22a 39199 cdleme22e 39203 cdleme22eALTN 39204 cdleme35b 39309 cdlemg9a 39491 cdlemg12a 39502 cdlemg13a 39510 cdlemg17a 39520 cdlemg17g 39526 cdlemg18c 39539 cdlemg33b0 39560 cdlemg46 39594 cdlemh1 39674 cdlemh 39676 cdlemk4 39693 cdlemki 39700 cdlemksv2 39706 cdlemk12 39709 cdlemk15 39714 cdlemk12u 39731 cdlemkid1 39781 dia2dimlem1 39923 dia2dimlem3 39925 cdlemn10 40065 dihjatcclem1 40277 |
Copyright terms: Public domain | W3C validator |