![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. Special case of latlej2 18519 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | hlatlej1 39331 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
6 | 2, 3 | hlatjcom 39324 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
7 | 5, 6 | breqtrrd 5194 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 Atomscatm 39219 HLchlt 39306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-lub 18416 df-join 18418 df-lat 18502 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 |
This theorem is referenced by: 2llnne2N 39365 cvrat3 39399 cvrat4 39400 hlatexch3N 39437 hlatexch4 39438 dalem3 39621 dalem25 39655 lnatexN 39736 lncmp 39740 2llnma3r 39745 paddasslem5 39781 dalawlem3 39830 dalawlem6 39833 dalawlem7 39834 dalawlem12 39839 lhp2atne 39991 lhp2at0ne 39993 4atexlemunv 40023 cdlemc2 40149 cdlemc5 40152 cdleme3h 40192 cdleme7 40206 cdleme9 40210 cdleme11c 40218 cdleme11dN 40219 cdleme11j 40224 cdleme16b 40236 cdleme17b 40244 cdleme18a 40248 cdleme18b 40249 cdleme18c 40250 cdleme19a 40260 cdleme20d 40269 cdleme20j 40275 cdleme21ct 40286 cdleme22a 40297 cdleme22e 40301 cdleme22eALTN 40302 cdleme35b 40407 cdlemg9a 40589 cdlemg12a 40600 cdlemg13a 40608 cdlemg17a 40618 cdlemg17g 40624 cdlemg18c 40637 cdlemg33b0 40658 cdlemg46 40692 cdlemh1 40772 cdlemh 40774 cdlemk4 40791 cdlemki 40798 cdlemksv2 40804 cdlemk12 40807 cdlemk15 40812 cdlemk12u 40829 cdlemkid1 40879 dia2dimlem1 41021 dia2dimlem3 41023 cdlemn10 41163 dihjatcclem1 41375 |
Copyright terms: Public domain | W3C validator |