![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. Special case of latlej2 18406 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | β’ β€ = (leβπΎ) |
hlatlej.j | β’ β¨ = (joinβπΎ) |
hlatlej.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatlej2 | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatlej.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | hlatlej.j | . . . 4 β’ β¨ = (joinβπΎ) | |
3 | hlatlej.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | 1, 2, 3 | hlatlej1 38548 | . . 3 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
5 | 4 | 3com23 1124 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
6 | 2, 3 | hlatjcom 38541 | . 2 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
7 | 5, 6 | breqtrrd 5175 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 lecple 17208 joincjn 18268 Atomscatm 38436 HLchlt 38523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-lub 18303 df-join 18305 df-lat 18389 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 |
This theorem is referenced by: 2llnne2N 38582 cvrat3 38616 cvrat4 38617 hlatexch3N 38654 hlatexch4 38655 dalem3 38838 dalem25 38872 lnatexN 38953 lncmp 38957 2llnma3r 38962 paddasslem5 38998 dalawlem3 39047 dalawlem6 39050 dalawlem7 39051 dalawlem12 39056 lhp2atne 39208 lhp2at0ne 39210 4atexlemunv 39240 cdlemc2 39366 cdlemc5 39369 cdleme3h 39409 cdleme7 39423 cdleme9 39427 cdleme11c 39435 cdleme11dN 39436 cdleme11j 39441 cdleme16b 39453 cdleme17b 39461 cdleme18a 39465 cdleme18b 39466 cdleme18c 39467 cdleme19a 39477 cdleme20d 39486 cdleme20j 39492 cdleme21ct 39503 cdleme22a 39514 cdleme22e 39518 cdleme22eALTN 39519 cdleme35b 39624 cdlemg9a 39806 cdlemg12a 39817 cdlemg13a 39825 cdlemg17a 39835 cdlemg17g 39841 cdlemg18c 39854 cdlemg33b0 39875 cdlemg46 39909 cdlemh1 39989 cdlemh 39991 cdlemk4 40008 cdlemki 40015 cdlemksv2 40021 cdlemk12 40024 cdlemk15 40029 cdlemk12u 40046 cdlemkid1 40096 dia2dimlem1 40238 dia2dimlem3 40240 cdlemn10 40380 dihjatcclem1 40592 |
Copyright terms: Public domain | W3C validator |