Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. Special case of latlej2 18167 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | hlatlej1 37389 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
5 | 4 | 3com23 1125 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
6 | 2, 3 | hlatjcom 37382 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
7 | 5, 6 | breqtrrd 5102 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 lecple 16969 joincjn 18029 Atomscatm 37277 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-lub 18064 df-join 18066 df-lat 18150 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: 2llnne2N 37422 cvrat3 37456 cvrat4 37457 hlatexch3N 37494 hlatexch4 37495 dalem3 37678 dalem25 37712 lnatexN 37793 lncmp 37797 2llnma3r 37802 paddasslem5 37838 dalawlem3 37887 dalawlem6 37890 dalawlem7 37891 dalawlem12 37896 lhp2atne 38048 lhp2at0ne 38050 4atexlemunv 38080 cdlemc2 38206 cdlemc5 38209 cdleme3h 38249 cdleme7 38263 cdleme9 38267 cdleme11c 38275 cdleme11dN 38276 cdleme11j 38281 cdleme16b 38293 cdleme17b 38301 cdleme18a 38305 cdleme18b 38306 cdleme18c 38307 cdleme19a 38317 cdleme20d 38326 cdleme20j 38332 cdleme21ct 38343 cdleme22a 38354 cdleme22e 38358 cdleme22eALTN 38359 cdleme35b 38464 cdlemg9a 38646 cdlemg12a 38657 cdlemg13a 38665 cdlemg17a 38675 cdlemg17g 38681 cdlemg18c 38694 cdlemg33b0 38715 cdlemg46 38749 cdlemh1 38829 cdlemh 38831 cdlemk4 38848 cdlemki 38855 cdlemksv2 38861 cdlemk12 38864 cdlemk15 38869 cdlemk12u 38886 cdlemkid1 38936 dia2dimlem1 39078 dia2dimlem3 39080 cdlemn10 39220 dihjatcclem1 39432 |
Copyright terms: Public domain | W3C validator |