![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version |
Description: A join's second argument is less than or equal to the join. Special case of latlej2 18507 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | hlatlej1 39357 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
5 | 4 | 3com23 1125 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
6 | 2, 3 | hlatjcom 39350 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
7 | 5, 6 | breqtrrd 5176 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 lecple 17305 joincjn 18369 Atomscatm 39245 HLchlt 39332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-lub 18404 df-join 18406 df-lat 18490 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 |
This theorem is referenced by: 2llnne2N 39391 cvrat3 39425 cvrat4 39426 hlatexch3N 39463 hlatexch4 39464 dalem3 39647 dalem25 39681 lnatexN 39762 lncmp 39766 2llnma3r 39771 paddasslem5 39807 dalawlem3 39856 dalawlem6 39859 dalawlem7 39860 dalawlem12 39865 lhp2atne 40017 lhp2at0ne 40019 4atexlemunv 40049 cdlemc2 40175 cdlemc5 40178 cdleme3h 40218 cdleme7 40232 cdleme9 40236 cdleme11c 40244 cdleme11dN 40245 cdleme11j 40250 cdleme16b 40262 cdleme17b 40270 cdleme18a 40274 cdleme18b 40275 cdleme18c 40276 cdleme19a 40286 cdleme20d 40295 cdleme20j 40301 cdleme21ct 40312 cdleme22a 40323 cdleme22e 40327 cdleme22eALTN 40328 cdleme35b 40433 cdlemg9a 40615 cdlemg12a 40626 cdlemg13a 40634 cdlemg17a 40644 cdlemg17g 40650 cdlemg18c 40663 cdlemg33b0 40684 cdlemg46 40718 cdlemh1 40798 cdlemh 40800 cdlemk4 40817 cdlemki 40824 cdlemksv2 40830 cdlemk12 40833 cdlemk15 40838 cdlemk12u 40855 cdlemkid1 40905 dia2dimlem1 41047 dia2dimlem3 41049 cdlemn10 41189 dihjatcclem1 41401 |
Copyright terms: Public domain | W3C validator |