| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version | ||
| Description: A join's second argument is less than or equal to the join. Special case of latlej2 18355 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | hlatlej1 39364 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 6 | 2, 3 | hlatjcom 39357 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 7 | 5, 6 | breqtrrd 5120 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 lecple 17168 joincjn 18217 Atomscatm 39252 HLchlt 39339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-lub 18250 df-join 18252 df-lat 18338 df-ats 39256 df-atl 39287 df-cvlat 39311 df-hlat 39340 |
| This theorem is referenced by: 2llnne2N 39397 cvrat3 39431 cvrat4 39432 hlatexch3N 39469 hlatexch4 39470 dalem3 39653 dalem25 39687 lnatexN 39768 lncmp 39772 2llnma3r 39777 paddasslem5 39813 dalawlem3 39862 dalawlem6 39865 dalawlem7 39866 dalawlem12 39871 lhp2atne 40023 lhp2at0ne 40025 4atexlemunv 40055 cdlemc2 40181 cdlemc5 40184 cdleme3h 40224 cdleme7 40238 cdleme9 40242 cdleme11c 40250 cdleme11dN 40251 cdleme11j 40256 cdleme16b 40268 cdleme17b 40276 cdleme18a 40280 cdleme18b 40281 cdleme18c 40282 cdleme19a 40292 cdleme20d 40301 cdleme20j 40307 cdleme21ct 40318 cdleme22a 40329 cdleme22e 40333 cdleme22eALTN 40334 cdleme35b 40439 cdlemg9a 40621 cdlemg12a 40632 cdlemg13a 40640 cdlemg17a 40650 cdlemg17g 40656 cdlemg18c 40669 cdlemg33b0 40690 cdlemg46 40724 cdlemh1 40804 cdlemh 40806 cdlemk4 40823 cdlemki 40830 cdlemksv2 40836 cdlemk12 40839 cdlemk15 40844 cdlemk12u 40861 cdlemkid1 40911 dia2dimlem1 41053 dia2dimlem3 41055 cdlemn10 41195 dihjatcclem1 41407 |
| Copyright terms: Public domain | W3C validator |