| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version | ||
| Description: A join's second argument is less than or equal to the join. Special case of latlej2 18408 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | hlatlej1 39368 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 6 | 2, 3 | hlatjcom 39361 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 7 | 5, 6 | breqtrrd 5135 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 Atomscatm 39256 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-lub 18305 df-join 18307 df-lat 18391 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 |
| This theorem is referenced by: 2llnne2N 39402 cvrat3 39436 cvrat4 39437 hlatexch3N 39474 hlatexch4 39475 dalem3 39658 dalem25 39692 lnatexN 39773 lncmp 39777 2llnma3r 39782 paddasslem5 39818 dalawlem3 39867 dalawlem6 39870 dalawlem7 39871 dalawlem12 39876 lhp2atne 40028 lhp2at0ne 40030 4atexlemunv 40060 cdlemc2 40186 cdlemc5 40189 cdleme3h 40229 cdleme7 40243 cdleme9 40247 cdleme11c 40255 cdleme11dN 40256 cdleme11j 40261 cdleme16b 40273 cdleme17b 40281 cdleme18a 40285 cdleme18b 40286 cdleme18c 40287 cdleme19a 40297 cdleme20d 40306 cdleme20j 40312 cdleme21ct 40323 cdleme22a 40334 cdleme22e 40338 cdleme22eALTN 40339 cdleme35b 40444 cdlemg9a 40626 cdlemg12a 40637 cdlemg13a 40645 cdlemg17a 40655 cdlemg17g 40661 cdlemg18c 40674 cdlemg33b0 40695 cdlemg46 40729 cdlemh1 40809 cdlemh 40811 cdlemk4 40828 cdlemki 40835 cdlemksv2 40841 cdlemk12 40844 cdlemk15 40849 cdlemk12u 40866 cdlemkid1 40916 dia2dimlem1 41058 dia2dimlem3 41060 cdlemn10 41200 dihjatcclem1 41412 |
| Copyright terms: Public domain | W3C validator |