| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version | ||
| Description: A join's second argument is less than or equal to the join. Special case of latlej2 18459 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | hlatlej1 39393 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 6 | 2, 3 | hlatjcom 39386 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 7 | 5, 6 | breqtrrd 5147 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 lecple 17278 joincjn 18323 Atomscatm 39281 HLchlt 39368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-lub 18356 df-join 18358 df-lat 18442 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 |
| This theorem is referenced by: 2llnne2N 39427 cvrat3 39461 cvrat4 39462 hlatexch3N 39499 hlatexch4 39500 dalem3 39683 dalem25 39717 lnatexN 39798 lncmp 39802 2llnma3r 39807 paddasslem5 39843 dalawlem3 39892 dalawlem6 39895 dalawlem7 39896 dalawlem12 39901 lhp2atne 40053 lhp2at0ne 40055 4atexlemunv 40085 cdlemc2 40211 cdlemc5 40214 cdleme3h 40254 cdleme7 40268 cdleme9 40272 cdleme11c 40280 cdleme11dN 40281 cdleme11j 40286 cdleme16b 40298 cdleme17b 40306 cdleme18a 40310 cdleme18b 40311 cdleme18c 40312 cdleme19a 40322 cdleme20d 40331 cdleme20j 40337 cdleme21ct 40348 cdleme22a 40359 cdleme22e 40363 cdleme22eALTN 40364 cdleme35b 40469 cdlemg9a 40651 cdlemg12a 40662 cdlemg13a 40670 cdlemg17a 40680 cdlemg17g 40686 cdlemg18c 40699 cdlemg33b0 40720 cdlemg46 40754 cdlemh1 40834 cdlemh 40836 cdlemk4 40853 cdlemki 40860 cdlemksv2 40866 cdlemk12 40869 cdlemk15 40874 cdlemk12u 40891 cdlemkid1 40941 dia2dimlem1 41083 dia2dimlem3 41085 cdlemn10 41225 dihjatcclem1 41437 |
| Copyright terms: Public domain | W3C validator |