| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version | ||
| Description: A join's second argument is less than or equal to the join. Special case of latlej2 18355 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | hlatlej1 39484 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 6 | 2, 3 | hlatjcom 39477 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 7 | 5, 6 | breqtrrd 5117 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 lecple 17168 joincjn 18217 Atomscatm 39372 HLchlt 39459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-lub 18250 df-join 18252 df-lat 18338 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 |
| This theorem is referenced by: 2llnne2N 39517 cvrat3 39551 cvrat4 39552 hlatexch3N 39589 hlatexch4 39590 dalem3 39773 dalem25 39807 lnatexN 39888 lncmp 39892 2llnma3r 39897 paddasslem5 39933 dalawlem3 39982 dalawlem6 39985 dalawlem7 39986 dalawlem12 39991 lhp2atne 40143 lhp2at0ne 40145 4atexlemunv 40175 cdlemc2 40301 cdlemc5 40304 cdleme3h 40344 cdleme7 40358 cdleme9 40362 cdleme11c 40370 cdleme11dN 40371 cdleme11j 40376 cdleme16b 40388 cdleme17b 40396 cdleme18a 40400 cdleme18b 40401 cdleme18c 40402 cdleme19a 40412 cdleme20d 40421 cdleme20j 40427 cdleme21ct 40438 cdleme22a 40449 cdleme22e 40453 cdleme22eALTN 40454 cdleme35b 40559 cdlemg9a 40741 cdlemg12a 40752 cdlemg13a 40760 cdlemg17a 40770 cdlemg17g 40776 cdlemg18c 40789 cdlemg33b0 40810 cdlemg46 40844 cdlemh1 40924 cdlemh 40926 cdlemk4 40943 cdlemki 40950 cdlemksv2 40956 cdlemk12 40959 cdlemk15 40964 cdlemk12u 40981 cdlemkid1 41031 dia2dimlem1 41173 dia2dimlem3 41175 cdlemn10 41315 dihjatcclem1 41527 |
| Copyright terms: Public domain | W3C validator |