| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej2 | Structured version Visualization version GIF version | ||
| Description: A join's second argument is less than or equal to the join. Special case of latlej2 18415 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej2 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlatlej.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | hlatlej.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | hlatlej.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 1, 2, 3 | hlatlej1 39375 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 5 | 4 | 3com23 1126 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑄 ∨ 𝑃)) |
| 6 | 2, 3 | hlatjcom 39368 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 7 | 5, 6 | breqtrrd 5138 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 lecple 17234 joincjn 18279 Atomscatm 39263 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-lub 18312 df-join 18314 df-lat 18398 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: 2llnne2N 39409 cvrat3 39443 cvrat4 39444 hlatexch3N 39481 hlatexch4 39482 dalem3 39665 dalem25 39699 lnatexN 39780 lncmp 39784 2llnma3r 39789 paddasslem5 39825 dalawlem3 39874 dalawlem6 39877 dalawlem7 39878 dalawlem12 39883 lhp2atne 40035 lhp2at0ne 40037 4atexlemunv 40067 cdlemc2 40193 cdlemc5 40196 cdleme3h 40236 cdleme7 40250 cdleme9 40254 cdleme11c 40262 cdleme11dN 40263 cdleme11j 40268 cdleme16b 40280 cdleme17b 40288 cdleme18a 40292 cdleme18b 40293 cdleme18c 40294 cdleme19a 40304 cdleme20d 40313 cdleme20j 40319 cdleme21ct 40330 cdleme22a 40341 cdleme22e 40345 cdleme22eALTN 40346 cdleme35b 40451 cdlemg9a 40633 cdlemg12a 40644 cdlemg13a 40652 cdlemg17a 40662 cdlemg17g 40668 cdlemg18c 40681 cdlemg33b0 40702 cdlemg46 40736 cdlemh1 40816 cdlemh 40818 cdlemk4 40835 cdlemki 40842 cdlemksv2 40848 cdlemk12 40851 cdlemk15 40856 cdlemk12u 40873 cdlemkid1 40923 dia2dimlem1 41065 dia2dimlem3 41067 cdlemn10 41207 dihjatcclem1 41419 |
| Copyright terms: Public domain | W3C validator |