Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intnatN Structured version   Visualization version   GIF version

Theorem intnatN 39426
Description: If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
intnat.b 𝐵 = (Base‘𝐾)
intnat.l = (le‘𝐾)
intnat.m = (meet‘𝐾)
intnat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
intnatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (¬ 𝑌 𝑋 ∧ (𝑋 𝑌) ∈ 𝐴)) → ¬ 𝑌𝐴)

Proof of Theorem intnatN
StepHypRef Expression
1 hlatl 39378 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
213ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ AtLat)
32ad2antrr 726 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ AtLat)
4 eqid 2735 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
5 intnat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atn0 39326 . . . . 5 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ (0.‘𝐾))
73, 6sylancom 588 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ (0.‘𝐾))
87ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ∈ 𝐴 → (𝑋 𝑌) ≠ (0.‘𝐾)))
9 simpll1 1213 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ HL)
109hllatd 39382 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ Lat)
11 simpll2 1214 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑋𝐵)
12 simpll3 1215 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑌𝐵)
13 intnat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
14 intnat.m . . . . . . . 8 = (meet‘𝐾)
1513, 14latmcom 18473 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
1610, 11, 12, 15syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑋 𝑌) = (𝑌 𝑋))
17 simplr 768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → ¬ 𝑌 𝑋)
189, 1syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ AtLat)
19 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑌𝐴)
20 intnat.l . . . . . . . . 9 = (le‘𝐾)
2113, 20, 14, 4, 5atnle 39335 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑌𝐴𝑋𝐵) → (¬ 𝑌 𝑋 ↔ (𝑌 𝑋) = (0.‘𝐾)))
2218, 19, 11, 21syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (¬ 𝑌 𝑋 ↔ (𝑌 𝑋) = (0.‘𝐾)))
2317, 22mpbid 232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑌 𝑋) = (0.‘𝐾))
2416, 23eqtrd 2770 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑋 𝑌) = (0.‘𝐾))
2524ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → (𝑌𝐴 → (𝑋 𝑌) = (0.‘𝐾)))
2625necon3ad 2945 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ≠ (0.‘𝐾) → ¬ 𝑌𝐴))
278, 26syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ∈ 𝐴 → ¬ 𝑌𝐴))
2827impr 454 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (¬ 𝑌 𝑋 ∧ (𝑋 𝑌) ∈ 𝐴)) → ¬ 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  meetcmee 18324  0.cp0 18433  Latclat 18441  Atomscatm 39281  AtLatcal 39282  HLchlt 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator