Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intnatN Structured version   Visualization version   GIF version

Theorem intnatN 38817
Description: If the intersection with a non-majorizing element is an atom, the intersecting element is not an atom. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
intnat.b 𝐵 = (Base‘𝐾)
intnat.l = (le‘𝐾)
intnat.m = (meet‘𝐾)
intnat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
intnatN (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (¬ 𝑌 𝑋 ∧ (𝑋 𝑌) ∈ 𝐴)) → ¬ 𝑌𝐴)

Proof of Theorem intnatN
StepHypRef Expression
1 hlatl 38769 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
213ad2ant1 1131 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ AtLat)
32ad2antrr 725 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → 𝐾 ∈ AtLat)
4 eqid 2727 . . . . . 6 (0.‘𝐾) = (0.‘𝐾)
5 intnat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atn0 38717 . . . . 5 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ (0.‘𝐾))
73, 6sylancom 587 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → (𝑋 𝑌) ≠ (0.‘𝐾))
87ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ∈ 𝐴 → (𝑋 𝑌) ≠ (0.‘𝐾)))
9 simpll1 1210 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ HL)
109hllatd 38773 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ Lat)
11 simpll2 1211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑋𝐵)
12 simpll3 1212 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑌𝐵)
13 intnat.b . . . . . . . 8 𝐵 = (Base‘𝐾)
14 intnat.m . . . . . . . 8 = (meet‘𝐾)
1513, 14latmcom 18446 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
1610, 11, 12, 15syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑋 𝑌) = (𝑌 𝑋))
17 simplr 768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → ¬ 𝑌 𝑋)
189, 1syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝐾 ∈ AtLat)
19 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → 𝑌𝐴)
20 intnat.l . . . . . . . . 9 = (le‘𝐾)
2113, 20, 14, 4, 5atnle 38726 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑌𝐴𝑋𝐵) → (¬ 𝑌 𝑋 ↔ (𝑌 𝑋) = (0.‘𝐾)))
2218, 19, 11, 21syl3anc 1369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (¬ 𝑌 𝑋 ↔ (𝑌 𝑋) = (0.‘𝐾)))
2317, 22mpbid 231 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑌 𝑋) = (0.‘𝐾))
2416, 23eqtrd 2767 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) ∧ 𝑌𝐴) → (𝑋 𝑌) = (0.‘𝐾))
2524ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → (𝑌𝐴 → (𝑋 𝑌) = (0.‘𝐾)))
2625necon3ad 2948 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ≠ (0.‘𝐾) → ¬ 𝑌𝐴))
278, 26syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ ¬ 𝑌 𝑋) → ((𝑋 𝑌) ∈ 𝐴 → ¬ 𝑌𝐴))
2827impr 454 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (¬ 𝑌 𝑋 ∧ (𝑋 𝑌) ∈ 𝐴)) → ¬ 𝑌𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935   class class class wbr 5142  cfv 6542  (class class class)co 7414  Basecbs 17171  lecple 17231  meetcmee 18295  0.cp0 18406  Latclat 18414  Atomscatm 38672  AtLatcal 38673  HLchlt 38759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-proset 18278  df-poset 18296  df-plt 18313  df-lub 18329  df-glb 18330  df-join 18331  df-meet 18332  df-p0 18408  df-lat 18415  df-covers 38675  df-ats 38676  df-atl 38707  df-cvlat 38731  df-hlat 38760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator