Proof of Theorem intnatN
Step | Hyp | Ref
| Expression |
1 | | hlatl 37301 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
2 | 1 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ AtLat) |
3 | 2 | ad2antrr 722 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → 𝐾 ∈ AtLat) |
4 | | eqid 2738 |
. . . . . 6
⊢
(0.‘𝐾) =
(0.‘𝐾) |
5 | | intnat.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atn0 37249 |
. . . . 5
⊢ ((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑋 ∧ 𝑌) ≠ (0.‘𝐾)) |
7 | 3, 6 | sylancom 587 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → (𝑋 ∧ 𝑌) ≠ (0.‘𝐾)) |
8 | 7 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∈ 𝐴 → (𝑋 ∧ 𝑌) ≠ (0.‘𝐾))) |
9 | | simpll1 1210 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝐾 ∈ HL) |
10 | 9 | hllatd 37305 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝐾 ∈ Lat) |
11 | | simpll2 1211 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
12 | | simpll3 1212 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
13 | | intnat.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
14 | | intnat.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
15 | 13, 14 | latmcom 18096 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
16 | 10, 11, 12, 15 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
17 | | simplr 765 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → ¬ 𝑌 ≤ 𝑋) |
18 | 9, 1 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝐾 ∈ AtLat) |
19 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → 𝑌 ∈ 𝐴) |
20 | | intnat.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
21 | 13, 20, 14, 4, 5 | atnle 37258 |
. . . . . . . 8
⊢ ((𝐾 ∈ AtLat ∧ 𝑌 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 ↔ (𝑌 ∧ 𝑋) = (0.‘𝐾))) |
22 | 18, 19, 11, 21 | syl3anc 1369 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (¬ 𝑌 ≤ 𝑋 ↔ (𝑌 ∧ 𝑋) = (0.‘𝐾))) |
23 | 17, 22 | mpbid 231 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (𝑌 ∧ 𝑋) = (0.‘𝐾)) |
24 | 16, 23 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) ∧ 𝑌 ∈ 𝐴) → (𝑋 ∧ 𝑌) = (0.‘𝐾)) |
25 | 24 | ex 412 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → (𝑌 ∈ 𝐴 → (𝑋 ∧ 𝑌) = (0.‘𝐾))) |
26 | 25 | necon3ad 2955 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ≠ (0.‘𝐾) → ¬ 𝑌 ∈ 𝐴)) |
27 | 8, 26 | syld 47 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ¬ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∈ 𝐴 → ¬ 𝑌 ∈ 𝐴)) |
28 | 27 | impr 454 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (¬ 𝑌 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴)) → ¬ 𝑌 ∈ 𝐴) |