Proof of Theorem eenglngeehlnmlem1
Step | Hyp | Ref
| Expression |
1 | | oveq2 6918 |
. . . . . . . 8
⊢ (𝑘 = 𝑡 → (1 − 𝑘) = (1 − 𝑡)) |
2 | 1 | oveq1d 6925 |
. . . . . . 7
⊢ (𝑘 = 𝑡 → ((1 − 𝑘) · (𝑥‘𝑖)) = ((1 − 𝑡) · (𝑥‘𝑖))) |
3 | | oveq1 6917 |
. . . . . . 7
⊢ (𝑘 = 𝑡 → (𝑘 · (𝑦‘𝑖)) = (𝑡 · (𝑦‘𝑖))) |
4 | 2, 3 | oveq12d 6928 |
. . . . . 6
⊢ (𝑘 = 𝑡 → (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
5 | 4 | eqeq2d 2835 |
. . . . 5
⊢ (𝑘 = 𝑡 → ((𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
6 | 5 | ralbidv 3195 |
. . . 4
⊢ (𝑘 = 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
7 | 6 | cbvrexv 3384 |
. . 3
⊢
(∃𝑘 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
8 | | unitssre 12619 |
. . . 4
⊢ (0[,]1)
⊆ ℝ |
9 | | ssrexv 3892 |
. . . 4
⊢ ((0[,]1)
⊆ ℝ → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
10 | 8, 9 | mp1i 13 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) →
(∃𝑡 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
11 | 7, 10 | syl5bi 234 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) →
(∃𝑘 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
12 | | 0re 10365 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
13 | | 1xr 10423 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
14 | | elico2 12532 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ*) → (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤ 𝑙 ∧ 𝑙 < 1))) |
15 | 12, 13, 14 | mp2an 683 |
. . . . . . 7
⊢ (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1)) |
16 | | simp1 1170 |
. . . . . . . 8
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 𝑙 ∈ ℝ) |
17 | | 1red 10364 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 1 ∈
ℝ) |
18 | 17, 16 | resubcld 10789 |
. . . . . . . 8
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → (1 − 𝑙) ∈ ℝ) |
19 | | 1cnd 10358 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 1 ∈
ℂ) |
20 | 16 | recnd 10392 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 𝑙 ∈ ℂ) |
21 | | ltne 10460 |
. . . . . . . . . 10
⊢ ((𝑙 ∈ ℝ ∧ 𝑙 < 1) → 1 ≠ 𝑙) |
22 | 21 | 3adant2 1165 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 1 ≠ 𝑙) |
23 | 19, 20, 22 | subne0d 10729 |
. . . . . . . 8
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → (1 − 𝑙) ≠ 0) |
24 | 16, 18, 23 | redivcld 11186 |
. . . . . . 7
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → (𝑙 / (1 − 𝑙)) ∈ ℝ) |
25 | 15, 24 | sylbi 209 |
. . . . . 6
⊢ (𝑙 ∈ (0[,)1) → (𝑙 / (1 − 𝑙)) ∈ ℝ) |
26 | 25 | ad2antlr 718 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → (𝑙 / (1 − 𝑙)) ∈ ℝ) |
27 | 26 | renegcld 10788 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → -(𝑙 / (1 − 𝑙)) ∈ ℝ) |
28 | | oveq2 6918 |
. . . . . . . . 9
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (1 − 𝑡) = (1 − -(𝑙 / (1 − 𝑙)))) |
29 | 28 | oveq1d 6925 |
. . . . . . . 8
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → ((1 − 𝑡) · (𝑥‘𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖))) |
30 | | oveq1 6917 |
. . . . . . . 8
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (𝑡 · (𝑦‘𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
31 | 29, 30 | oveq12d 6928 |
. . . . . . 7
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
32 | 31 | eqeq2d 2835 |
. . . . . 6
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
33 | 32 | ralbidv 3195 |
. . . . 5
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
34 | 33 | adantl 475 |
. . . 4
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) ∧ 𝑡 = -(𝑙 / (1 − 𝑙))) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
35 | | elmapi 8149 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) → 𝑥:(1...𝑁)⟶ℝ) |
36 | 35 | 3ad2ant2 1168 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ) |
37 | 36 | ad2antrr 717 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑥:(1...𝑁)⟶ℝ) |
38 | 37 | ffvelrnda 6613 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℝ) |
39 | 38 | recnd 10392 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℂ) |
40 | 15, 16 | sylbi 209 |
. . . . . . . . . . . 12
⊢ (𝑙 ∈ (0[,)1) → 𝑙 ∈
ℝ) |
41 | 40 | ad2antlr 718 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℝ) |
42 | 41 | recnd 10392 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℂ) |
43 | | eldifi 3961 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ((ℝ
↑𝑚 (1...𝑁)) ∖ {𝑥}) → 𝑦 ∈ (ℝ ↑𝑚
(1...𝑁))) |
44 | | elmapi 8149 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (ℝ
↑𝑚 (1...𝑁)) → 𝑦:(1...𝑁)⟶ℝ) |
45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ((ℝ
↑𝑚 (1...𝑁)) ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ) |
46 | 45 | 3ad2ant3 1169 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ) |
47 | 46 | ad2antrr 717 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑦:(1...𝑁)⟶ℝ) |
48 | 47 | ffvelrnda 6613 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℝ) |
49 | 48 | recnd 10392 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℂ) |
50 | 42, 49 | mulcld 10384 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 · (𝑦‘𝑖)) ∈ ℂ) |
51 | | 1cnd 10358 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ) |
52 | 51, 42 | subcld 10720 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ∈ ℂ) |
53 | | elmapi 8149 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ (ℝ
↑𝑚 (1...𝑁)) → 𝑝:(1...𝑁)⟶ℝ) |
54 | 53 | ad2antlr 718 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑝:(1...𝑁)⟶ℝ) |
55 | 54 | ffvelrnda 6613 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℝ) |
56 | 55 | recnd 10392 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℂ) |
57 | 52, 56 | mulcld 10384 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · (𝑝‘𝑖)) ∈ ℂ) |
58 | 39, 50, 57 | subadd2d 10739 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) ↔ (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) = (𝑥‘𝑖))) |
59 | | eqcom 2832 |
. . . . . . . 8
⊢ ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) = (𝑥‘𝑖)) |
60 | 58, 59 | syl6rbbr 282 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)))) |
61 | 39, 50 | subcld 10720 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) ∈ ℂ) |
62 | 15, 22 | sylbi 209 |
. . . . . . . . . . . 12
⊢ (𝑙 ∈ (0[,)1) → 1 ≠
𝑙) |
63 | 62 | ad2antlr 718 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ≠ 𝑙) |
64 | 51, 42, 63 | subne0d 10729 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ≠ 0) |
65 | 61, 52, 56, 64 | divmuld 11156 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) ↔ ((1 − 𝑙) · (𝑝‘𝑖)) = ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))))) |
66 | | eqcom 2832 |
. . . . . . . . 9
⊢ (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) ↔ ((1 − 𝑙) · (𝑝‘𝑖)) = ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖)))) |
67 | 65, 66 | syl6rbbr 282 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) ↔ (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖))) |
68 | | eqcom 2832 |
. . . . . . . . . 10
⊢ ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙))) |
69 | 39, 50, 52, 64 | divsubdird 11173 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (((𝑥‘𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦‘𝑖)) / (1 − 𝑙)))) |
70 | 39, 52, 64 | divrec2d 11138 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) / (1 − 𝑙)) = ((1 / (1 − 𝑙)) · (𝑥‘𝑖))) |
71 | 42, 49, 52, 64 | div23d 11171 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 · (𝑦‘𝑖)) / (1 − 𝑙)) = ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
72 | 70, 71 | oveq12d 6928 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦‘𝑖)) / (1 − 𝑙))) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
73 | 69, 72 | eqtrd 2861 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
74 | 73 | eqeq2d 2835 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) ↔ (𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
75 | 68, 74 | syl5bb 275 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
76 | 42, 52, 64 | divcld 11134 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 / (1 − 𝑙)) ∈ ℂ) |
77 | 76, 49 | mulneg1d 10814 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)) = -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
78 | 77 | eqcomd 2831 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
79 | 78 | oveq2d 6926 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
80 | 52, 64 | reccld 11127 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) ∈ ℂ) |
81 | 80, 39 | mulcld 10384 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥‘𝑖)) ∈ ℂ) |
82 | 76, 49 | mulcld 10384 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)) ∈ ℂ) |
83 | 81, 82 | negsubd 10726 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
84 | 51, 76 | subnegd 10727 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 + (𝑙 / (1 − 𝑙)))) |
85 | | muldivdir 11052 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℂ ∧ 𝑙
∈ ℂ ∧ ((1 − 𝑙) ∈ ℂ ∧ (1 − 𝑙) ≠ 0)) → ((((1 −
𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙)))) |
86 | 51, 42, 52, 64, 85 | syl112anc 1497 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙)))) |
87 | 52 | mulid1d 10381 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · 1) = (1 − 𝑙)) |
88 | 87 | oveq1d 6925 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = ((1 − 𝑙) + 𝑙)) |
89 | 51, 42 | npcand 10724 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) + 𝑙) = 1) |
90 | 88, 89 | eqtrd 2861 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = 1) |
91 | 90 | oveq1d 6925 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 / (1 − 𝑙))) |
92 | 84, 86, 91 | 3eqtr2d 2867 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 / (1 − 𝑙))) |
93 | 92 | eqcomd 2831 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) = (1 − -(𝑙 / (1 − 𝑙)))) |
94 | 93 | oveq1d 6925 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥‘𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖))) |
95 | 94 | oveq1d 6925 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
96 | 79, 83, 95 | 3eqtr3d 2869 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
97 | 96 | eqeq2d 2835 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
98 | 97 | biimpd 221 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
99 | 75, 98 | sylbid 232 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
100 | 67, 99 | sylbid 232 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
101 | 60, 100 | sylbid 232 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
102 | 101 | ralimdva 3171 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) →
(∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
103 | 102 | imp 397 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
104 | 27, 34, 103 | rspcedvd 3533 |
. . 3
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
105 | 104 | rexlimdva2 3243 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) →
(∃𝑙 ∈
(0[,)1)∀𝑖 ∈
(1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
106 | | 0xr 10410 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
107 | | 1re 10363 |
. . . . . . 7
⊢ 1 ∈
ℝ |
108 | | elioc2 12531 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 < 𝑚 ∧ 𝑚 ≤ 1))) |
109 | 106, 107,
108 | mp2an 683 |
. . . . . 6
⊢ (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1)) |
110 | | simp1 1170 |
. . . . . . 7
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1) → 𝑚 ∈ ℝ) |
111 | | gt0ne0 10824 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚) → 𝑚 ≠ 0) |
112 | 111 | 3adant3 1166 |
. . . . . . 7
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1) → 𝑚 ≠ 0) |
113 | 110, 112 | rereccld 11185 |
. . . . . 6
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1) → (1 / 𝑚) ∈ ℝ) |
114 | 109, 113 | sylbi 209 |
. . . . 5
⊢ (𝑚 ∈ (0(,]1) → (1 /
𝑚) ∈
ℝ) |
115 | 114 | ad2antlr 718 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → (1 / 𝑚) ∈ ℝ) |
116 | | oveq2 6918 |
. . . . . . . . 9
⊢ (𝑡 = (1 / 𝑚) → (1 − 𝑡) = (1 − (1 / 𝑚))) |
117 | 116 | oveq1d 6925 |
. . . . . . . 8
⊢ (𝑡 = (1 / 𝑚) → ((1 − 𝑡) · (𝑥‘𝑖)) = ((1 − (1 / 𝑚)) · (𝑥‘𝑖))) |
118 | | oveq1 6917 |
. . . . . . . 8
⊢ (𝑡 = (1 / 𝑚) → (𝑡 · (𝑦‘𝑖)) = ((1 / 𝑚) · (𝑦‘𝑖))) |
119 | 117, 118 | oveq12d 6928 |
. . . . . . 7
⊢ (𝑡 = (1 / 𝑚) → (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖)))) |
120 | 119 | eqeq2d 2835 |
. . . . . 6
⊢ (𝑡 = (1 / 𝑚) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
121 | 120 | ralbidv 3195 |
. . . . 5
⊢ (𝑡 = (1 / 𝑚) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
122 | 121 | adantl 475 |
. . . 4
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) ∧ 𝑡 = (1 / 𝑚)) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
123 | | eqcom 2832 |
. . . . . . . 8
⊢ ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = (𝑦‘𝑖)) |
124 | 46 | ad2antrr 717 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑦:(1...𝑁)⟶ℝ) |
125 | 124 | ffvelrnda 6613 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℝ) |
126 | 125 | recnd 10392 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℂ) |
127 | | 1cnd 10358 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ) |
128 | 109, 110 | sylbi 209 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (0(,]1) → 𝑚 ∈
ℝ) |
129 | 128 | recnd 10392 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (0(,]1) → 𝑚 ∈
ℂ) |
130 | 129 | ad2antlr 718 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ∈ ℂ) |
131 | 127, 130 | subcld 10720 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑚) ∈ ℂ) |
132 | 36 | ad2antrr 717 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑥:(1...𝑁)⟶ℝ) |
133 | 132 | ffvelrnda 6613 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℝ) |
134 | 133 | recnd 10392 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℂ) |
135 | 131, 134 | mulcld 10384 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑚) · (𝑥‘𝑖)) ∈ ℂ) |
136 | 126, 135 | negsubd 10726 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) + -((1 − 𝑚) · (𝑥‘𝑖))) = ((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖)))) |
137 | 131, 134 | mulneg1d 10814 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥‘𝑖)) = -((1 − 𝑚) · (𝑥‘𝑖))) |
138 | 127, 130 | negsubdi2d 10736 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − 𝑚) = (𝑚 − 1)) |
139 | 138 | oveq1d 6925 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥‘𝑖)) = ((𝑚 − 1) · (𝑥‘𝑖))) |
140 | 137, 139 | eqtr3d 2863 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -((1 − 𝑚) · (𝑥‘𝑖)) = ((𝑚 − 1) · (𝑥‘𝑖))) |
141 | 140 | oveq2d 6926 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) + -((1 − 𝑚) · (𝑥‘𝑖))) = ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖)))) |
142 | 136, 141 | eqtr3d 2863 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖))) = ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖)))) |
143 | 142 | eqeq1d 2827 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)) ↔ ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)))) |
144 | 53 | ad2antlr 718 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑝:(1...𝑁)⟶ℝ) |
145 | 144 | ffvelrnda 6613 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℝ) |
146 | 145 | recnd 10392 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℂ) |
147 | 130, 146 | mulcld 10384 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 · (𝑝‘𝑖)) ∈ ℂ) |
148 | 126, 135,
147 | subaddd 10738 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)) ↔ (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = (𝑦‘𝑖))) |
149 | | eqcom 2832 |
. . . . . . . . . . 11
⊢ ((((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚)) |
150 | 149 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚))) |
151 | 130, 127 | subcld 10720 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 − 1) ∈ ℂ) |
152 | 151, 134 | mulcld 10384 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) · (𝑥‘𝑖)) ∈ ℂ) |
153 | 126, 152 | addcld 10383 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) ∈ ℂ) |
154 | | elioc1 12512 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1))) |
155 | 106, 13, 154 | mp2an 683 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1)) |
156 | 12 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℝ*
→ 0 ∈ ℝ) |
157 | 156 | anim1i 608 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℝ*
∧ 0 < 𝑚) → (0
∈ ℝ ∧ 0 < 𝑚)) |
158 | 157 | 3adant3 1166 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1) → (0 ∈
ℝ ∧ 0 < 𝑚)) |
159 | | ltne 10460 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 0 < 𝑚) → 𝑚 ≠ 0) |
160 | 158, 159 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1) → 𝑚 ≠ 0) |
161 | 155, 160 | sylbi 209 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0(,]1) → 𝑚 ≠ 0) |
162 | 161 | ad2antlr 718 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ≠ 0) |
163 | 153, 146,
130, 162 | divmul2d 11167 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (𝑝‘𝑖) ↔ ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)))) |
164 | 126, 152,
130, 162 | divdird 11172 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (((𝑦‘𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚))) |
165 | 126, 130,
162 | divrec2d 11138 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) / 𝑚) = ((1 / 𝑚) · (𝑦‘𝑖))) |
166 | 151, 134,
130, 162 | div23d 11171 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚) = (((𝑚 − 1) / 𝑚) · (𝑥‘𝑖))) |
167 | 130, 127,
130, 162 | divsubdird 11173 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) / 𝑚) = ((𝑚 / 𝑚) − (1 / 𝑚))) |
168 | 167 | oveq1d 6925 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) / 𝑚) · (𝑥‘𝑖)) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) |
169 | 166, 168 | eqtrd 2861 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) |
170 | 165, 169 | oveq12d 6928 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚)) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖)))) |
171 | 164, 170 | eqtrd 2861 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖)))) |
172 | 171 | eqeq2d 2835 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
173 | 150, 163,
172 | 3bitr3d 301 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
174 | 143, 148,
173 | 3bitr3d 301 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = (𝑦‘𝑖) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
175 | 123, 174 | syl5bb 275 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
176 | 130, 162 | reccld 11127 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℂ) |
177 | 176, 126 | mulcld 10384 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑚) · (𝑦‘𝑖)) ∈ ℂ) |
178 | 127, 176 | subcld 10720 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / 𝑚)) ∈ ℂ) |
179 | 178, 134 | mulcld 10384 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / 𝑚)) · (𝑥‘𝑖)) ∈ ℂ) |
180 | 130, 162 | dividd 11132 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 / 𝑚) = 1) |
181 | 180 | oveq1d 6925 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 / 𝑚) − (1 / 𝑚)) = (1 − (1 / 𝑚))) |
182 | 181 | oveq1d 6925 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖)) = ((1 − (1 / 𝑚)) · (𝑥‘𝑖))) |
183 | 182 | oveq2d 6926 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) = (((1 / 𝑚) · (𝑦‘𝑖)) + ((1 − (1 / 𝑚)) · (𝑥‘𝑖)))) |
184 | 177, 179,
183 | comraddd 10576 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖)))) |
185 | 184 | eqeq2d 2835 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
186 | 185 | biimpd 221 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) → (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
187 | 175, 186 | sylbid 232 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
188 | 187 | ralimdva 3171 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) →
(∀𝑖 ∈
(1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
189 | 188 | imp 397 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖)))) |
190 | 115, 122,
189 | rspcedvd 3533 |
. . 3
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
191 | 190 | rexlimdva2 3243 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) →
(∃𝑚 ∈
(0(,]1)∀𝑖 ∈
(1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
192 | 11, 105, 191 | 3jaod 1557 |
1
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑𝑚 (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑𝑚
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑𝑚
(1...𝑁))) →
((∃𝑘 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |