Proof of Theorem eenglngeehlnmlem1
| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7440 |
. . . . . . . 8
⊢ (𝑘 = 𝑡 → (1 − 𝑘) = (1 − 𝑡)) |
| 2 | 1 | oveq1d 7447 |
. . . . . . 7
⊢ (𝑘 = 𝑡 → ((1 − 𝑘) · (𝑥‘𝑖)) = ((1 − 𝑡) · (𝑥‘𝑖))) |
| 3 | | oveq1 7439 |
. . . . . . 7
⊢ (𝑘 = 𝑡 → (𝑘 · (𝑦‘𝑖)) = (𝑡 · (𝑦‘𝑖))) |
| 4 | 2, 3 | oveq12d 7450 |
. . . . . 6
⊢ (𝑘 = 𝑡 → (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
| 5 | 4 | eqeq2d 2747 |
. . . . 5
⊢ (𝑘 = 𝑡 → ((𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 6 | 5 | ralbidv 3177 |
. . . 4
⊢ (𝑘 = 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 7 | 6 | cbvrexvw 3237 |
. . 3
⊢
(∃𝑘 ∈
(0[,]1)∀𝑖 ∈
(1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
| 8 | | unitssre 13540 |
. . . 4
⊢ (0[,]1)
⊆ ℝ |
| 9 | | ssrexv 4052 |
. . . 4
⊢ ((0[,]1)
⊆ ℝ → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 10 | 8, 9 | mp1i 13 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 11 | 7, 10 | biimtrid 242 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 12 | | 0re 11264 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
| 13 | | 1xr 11321 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
| 14 | | elico2 13452 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ*) → (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤ 𝑙 ∧ 𝑙 < 1))) |
| 15 | 12, 13, 14 | mp2an 692 |
. . . . . . 7
⊢ (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1)) |
| 16 | | simp1 1136 |
. . . . . . . 8
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 𝑙 ∈ ℝ) |
| 17 | | 1red 11263 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 1 ∈
ℝ) |
| 18 | 17, 16 | resubcld 11692 |
. . . . . . . 8
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → (1 − 𝑙) ∈ ℝ) |
| 19 | | 1cnd 11257 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 1 ∈
ℂ) |
| 20 | 16 | recnd 11290 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 𝑙 ∈ ℂ) |
| 21 | | ltne 11359 |
. . . . . . . . . 10
⊢ ((𝑙 ∈ ℝ ∧ 𝑙 < 1) → 1 ≠ 𝑙) |
| 22 | 21 | 3adant2 1131 |
. . . . . . . . 9
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → 1 ≠ 𝑙) |
| 23 | 19, 20, 22 | subne0d 11630 |
. . . . . . . 8
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → (1 − 𝑙) ≠ 0) |
| 24 | 16, 18, 23 | redivcld 12096 |
. . . . . . 7
⊢ ((𝑙 ∈ ℝ ∧ 0 ≤
𝑙 ∧ 𝑙 < 1) → (𝑙 / (1 − 𝑙)) ∈ ℝ) |
| 25 | 15, 24 | sylbi 217 |
. . . . . 6
⊢ (𝑙 ∈ (0[,)1) → (𝑙 / (1 − 𝑙)) ∈ ℝ) |
| 26 | 25 | ad2antlr 727 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → (𝑙 / (1 − 𝑙)) ∈ ℝ) |
| 27 | 26 | renegcld 11691 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → -(𝑙 / (1 − 𝑙)) ∈ ℝ) |
| 28 | | oveq2 7440 |
. . . . . . . . 9
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (1 − 𝑡) = (1 − -(𝑙 / (1 − 𝑙)))) |
| 29 | 28 | oveq1d 7447 |
. . . . . . . 8
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → ((1 − 𝑡) · (𝑥‘𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖))) |
| 30 | | oveq1 7439 |
. . . . . . . 8
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (𝑡 · (𝑦‘𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
| 31 | 29, 30 | oveq12d 7450 |
. . . . . . 7
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 32 | 31 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 33 | 32 | ralbidv 3177 |
. . . . 5
⊢ (𝑡 = -(𝑙 / (1 − 𝑙)) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 34 | 33 | adantl 481 |
. . . 4
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) ∧ 𝑡 = -(𝑙 / (1 − 𝑙))) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 35 | | eqcom 2743 |
. . . . . . . 8
⊢ ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) = (𝑥‘𝑖)) |
| 36 | | elmapi 8890 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (ℝ
↑m (1...𝑁))
→ 𝑥:(1...𝑁)⟶ℝ) |
| 37 | 36 | 3ad2ant2 1134 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ) |
| 38 | 37 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑥:(1...𝑁)⟶ℝ) |
| 39 | 38 | ffvelcdmda 7103 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℝ) |
| 40 | 39 | recnd 11290 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℂ) |
| 41 | 15, 16 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝑙 ∈ (0[,)1) → 𝑙 ∈
ℝ) |
| 42 | 41 | ad2antlr 727 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℝ) |
| 43 | 42 | recnd 11290 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℂ) |
| 44 | | eldifi 4130 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) → 𝑦 ∈ (ℝ
↑m (1...𝑁))) |
| 45 | | elmapi 8890 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (ℝ
↑m (1...𝑁))
→ 𝑦:(1...𝑁)⟶ℝ) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ) |
| 47 | 46 | 3ad2ant3 1135 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ) |
| 48 | 47 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑦:(1...𝑁)⟶ℝ) |
| 49 | 48 | ffvelcdmda 7103 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℝ) |
| 50 | 49 | recnd 11290 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℂ) |
| 51 | 43, 50 | mulcld 11282 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 · (𝑦‘𝑖)) ∈ ℂ) |
| 52 | | 1cnd 11257 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ) |
| 53 | 52, 43 | subcld 11621 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ∈ ℂ) |
| 54 | | elmapi 8890 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ (ℝ
↑m (1...𝑁))
→ 𝑝:(1...𝑁)⟶ℝ) |
| 55 | 54 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑝:(1...𝑁)⟶ℝ) |
| 56 | 55 | ffvelcdmda 7103 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℝ) |
| 57 | 56 | recnd 11290 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℂ) |
| 58 | 53, 57 | mulcld 11282 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · (𝑝‘𝑖)) ∈ ℂ) |
| 59 | 40, 51, 58 | subadd2d 11640 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) ↔ (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) = (𝑥‘𝑖))) |
| 60 | 35, 59 | bitr4id 290 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)))) |
| 61 | | eqcom 2743 |
. . . . . . . . 9
⊢ (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) ↔ ((1 − 𝑙) · (𝑝‘𝑖)) = ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖)))) |
| 62 | 40, 51 | subcld 11621 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) ∈ ℂ) |
| 63 | 15, 22 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝑙 ∈ (0[,)1) → 1 ≠
𝑙) |
| 64 | 63 | ad2antlr 727 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ≠ 𝑙) |
| 65 | 52, 43, 64 | subne0d 11630 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ≠ 0) |
| 66 | 62, 53, 57, 65 | divmuld 12066 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) ↔ ((1 − 𝑙) · (𝑝‘𝑖)) = ((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))))) |
| 67 | 61, 66 | bitr4id 290 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) ↔ (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖))) |
| 68 | | eqcom 2743 |
. . . . . . . . . 10
⊢ ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙))) |
| 69 | 40, 51, 53, 65 | divsubdird 12083 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (((𝑥‘𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦‘𝑖)) / (1 − 𝑙)))) |
| 70 | 40, 53, 65 | divrec2d 12048 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) / (1 − 𝑙)) = ((1 / (1 − 𝑙)) · (𝑥‘𝑖))) |
| 71 | 43, 50, 53, 65 | div23d 12081 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 · (𝑦‘𝑖)) / (1 − 𝑙)) = ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
| 72 | 70, 71 | oveq12d 7450 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦‘𝑖)) / (1 − 𝑙))) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 73 | 69, 72 | eqtrd 2776 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 74 | 73 | eqeq2d 2747 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) ↔ (𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 75 | 68, 74 | bitrid 283 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 76 | 43, 53, 65 | divcld 12044 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 / (1 − 𝑙)) ∈ ℂ) |
| 77 | 76, 50 | mulneg1d 11717 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)) = -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
| 78 | 77 | eqcomd 2742 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) |
| 79 | 78 | oveq2d 7448 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 80 | 53, 65 | reccld 12037 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) ∈ ℂ) |
| 81 | 80, 40 | mulcld 11282 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥‘𝑖)) ∈ ℂ) |
| 82 | 76, 50 | mulcld 11282 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)) ∈ ℂ) |
| 83 | 81, 82 | negsubd 11627 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 84 | 52, 76 | subnegd 11628 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 + (𝑙 / (1 − 𝑙)))) |
| 85 | | muldivdir 11961 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℂ ∧ 𝑙
∈ ℂ ∧ ((1 − 𝑙) ∈ ℂ ∧ (1 − 𝑙) ≠ 0)) → ((((1 −
𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙)))) |
| 86 | 52, 43, 53, 65, 85 | syl112anc 1375 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙)))) |
| 87 | 53 | mulridd 11279 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · 1) = (1 − 𝑙)) |
| 88 | 87 | oveq1d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = ((1 − 𝑙) + 𝑙)) |
| 89 | 52, 43 | npcand 11625 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) + 𝑙) = 1) |
| 90 | 88, 89 | eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = 1) |
| 91 | 90 | oveq1d 7447 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 / (1 − 𝑙))) |
| 92 | 84, 86, 91 | 3eqtr2d 2782 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 / (1 − 𝑙))) |
| 93 | 92 | eqcomd 2742 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) = (1 − -(𝑙 / (1 − 𝑙)))) |
| 94 | 93 | oveq1d 7447 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥‘𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖))) |
| 95 | 94 | oveq1d 7447 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 96 | 79, 83, 95 | 3eqtr3d 2784 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 97 | 96 | eqeq2d 2747 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 98 | 97 | biimpd 229 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / (1 − 𝑙)) · (𝑥‘𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 99 | 75, 98 | sylbid 240 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) / (1 − 𝑙)) = (𝑝‘𝑖) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 100 | 67, 99 | sylbid 240 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − (𝑙 · (𝑦‘𝑖))) = ((1 − 𝑙) · (𝑝‘𝑖)) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 101 | 60, 100 | sylbid 240 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → (𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 102 | 101 | ralimdva 3166 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → (∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖))))) |
| 103 | 102 | imp 406 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥‘𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦‘𝑖)))) |
| 104 | 27, 34, 103 | rspcedvd 3623 |
. . 3
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
| 105 | 104 | rexlimdva2 3156 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 106 | | 0xr 11309 |
. . . . . . 7
⊢ 0 ∈
ℝ* |
| 107 | | 1re 11262 |
. . . . . . 7
⊢ 1 ∈
ℝ |
| 108 | | elioc2 13451 |
. . . . . . 7
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 < 𝑚 ∧ 𝑚 ≤ 1))) |
| 109 | 106, 107,
108 | mp2an 692 |
. . . . . 6
⊢ (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1)) |
| 110 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1) → 𝑚 ∈ ℝ) |
| 111 | | gt0ne0 11729 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚) → 𝑚 ≠ 0) |
| 112 | 111 | 3adant3 1132 |
. . . . . . 7
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1) → 𝑚 ≠ 0) |
| 113 | 110, 112 | rereccld 12095 |
. . . . . 6
⊢ ((𝑚 ∈ ℝ ∧ 0 <
𝑚 ∧ 𝑚 ≤ 1) → (1 / 𝑚) ∈ ℝ) |
| 114 | 109, 113 | sylbi 217 |
. . . . 5
⊢ (𝑚 ∈ (0(,]1) → (1 /
𝑚) ∈
ℝ) |
| 115 | 114 | ad2antlr 727 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → (1 / 𝑚) ∈ ℝ) |
| 116 | | oveq2 7440 |
. . . . . . . . 9
⊢ (𝑡 = (1 / 𝑚) → (1 − 𝑡) = (1 − (1 / 𝑚))) |
| 117 | 116 | oveq1d 7447 |
. . . . . . . 8
⊢ (𝑡 = (1 / 𝑚) → ((1 − 𝑡) · (𝑥‘𝑖)) = ((1 − (1 / 𝑚)) · (𝑥‘𝑖))) |
| 118 | | oveq1 7439 |
. . . . . . . 8
⊢ (𝑡 = (1 / 𝑚) → (𝑡 · (𝑦‘𝑖)) = ((1 / 𝑚) · (𝑦‘𝑖))) |
| 119 | 117, 118 | oveq12d 7450 |
. . . . . . 7
⊢ (𝑡 = (1 / 𝑚) → (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖)))) |
| 120 | 119 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑡 = (1 / 𝑚) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
| 121 | 120 | ralbidv 3177 |
. . . . 5
⊢ (𝑡 = (1 / 𝑚) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
| 122 | 121 | adantl 481 |
. . . 4
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) ∧ 𝑡 = (1 / 𝑚)) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
| 123 | | eqcom 2743 |
. . . . . . . 8
⊢ ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = (𝑦‘𝑖)) |
| 124 | 47 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑦:(1...𝑁)⟶ℝ) |
| 125 | 124 | ffvelcdmda 7103 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℝ) |
| 126 | 125 | recnd 11290 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℂ) |
| 127 | | 1cnd 11257 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ) |
| 128 | 109, 110 | sylbi 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ (0(,]1) → 𝑚 ∈
ℝ) |
| 129 | 128 | recnd 11290 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ (0(,]1) → 𝑚 ∈
ℂ) |
| 130 | 129 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ∈ ℂ) |
| 131 | 127, 130 | subcld 11621 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑚) ∈ ℂ) |
| 132 | 37 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑥:(1...𝑁)⟶ℝ) |
| 133 | 132 | ffvelcdmda 7103 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℝ) |
| 134 | 133 | recnd 11290 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℂ) |
| 135 | 131, 134 | mulcld 11282 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑚) · (𝑥‘𝑖)) ∈ ℂ) |
| 136 | 126, 135 | negsubd 11627 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) + -((1 − 𝑚) · (𝑥‘𝑖))) = ((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖)))) |
| 137 | 131, 134 | mulneg1d 11717 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥‘𝑖)) = -((1 − 𝑚) · (𝑥‘𝑖))) |
| 138 | 127, 130 | negsubdi2d 11637 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − 𝑚) = (𝑚 − 1)) |
| 139 | 138 | oveq1d 7447 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥‘𝑖)) = ((𝑚 − 1) · (𝑥‘𝑖))) |
| 140 | 137, 139 | eqtr3d 2778 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -((1 − 𝑚) · (𝑥‘𝑖)) = ((𝑚 − 1) · (𝑥‘𝑖))) |
| 141 | 140 | oveq2d 7448 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) + -((1 − 𝑚) · (𝑥‘𝑖))) = ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖)))) |
| 142 | 136, 141 | eqtr3d 2778 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖))) = ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖)))) |
| 143 | 142 | eqeq1d 2738 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)) ↔ ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)))) |
| 144 | 54 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑝:(1...𝑁)⟶ℝ) |
| 145 | 144 | ffvelcdmda 7103 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℝ) |
| 146 | 145 | recnd 11290 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℂ) |
| 147 | 130, 146 | mulcld 11282 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 · (𝑝‘𝑖)) ∈ ℂ) |
| 148 | 126, 135,
147 | subaddd 11639 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − 𝑚) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)) ↔ (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = (𝑦‘𝑖))) |
| 149 | | eqcom 2743 |
. . . . . . . . . . 11
⊢ ((((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚)) |
| 150 | 149 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚))) |
| 151 | 130, 127 | subcld 11621 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 − 1) ∈ ℂ) |
| 152 | 151, 134 | mulcld 11282 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) · (𝑥‘𝑖)) ∈ ℂ) |
| 153 | 126, 152 | addcld 11281 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) ∈ ℂ) |
| 154 | | elioc1 13430 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1))) |
| 155 | 106, 13, 154 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1)) |
| 156 | 12 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℝ*
→ 0 ∈ ℝ) |
| 157 | 156 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℝ*
∧ 0 < 𝑚) → (0
∈ ℝ ∧ 0 < 𝑚)) |
| 158 | 157 | 3adant3 1132 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1) → (0 ∈
ℝ ∧ 0 < 𝑚)) |
| 159 | | ltne 11359 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ ∧ 0 < 𝑚) → 𝑚 ≠ 0) |
| 160 | 158, 159 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℝ*
∧ 0 < 𝑚 ∧ 𝑚 ≤ 1) → 𝑚 ≠ 0) |
| 161 | 155, 160 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0(,]1) → 𝑚 ≠ 0) |
| 162 | 161 | ad2antlr 727 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ≠ 0) |
| 163 | 153, 146,
130, 162 | divmul2d 12077 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (𝑝‘𝑖) ↔ ((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)))) |
| 164 | 126, 152,
130, 162 | divdird 12082 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (((𝑦‘𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚))) |
| 165 | 126, 130,
162 | divrec2d 12048 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) / 𝑚) = ((1 / 𝑚) · (𝑦‘𝑖))) |
| 166 | 151, 134,
130, 162 | div23d 12081 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚) = (((𝑚 − 1) / 𝑚) · (𝑥‘𝑖))) |
| 167 | 130, 127,
130, 162 | divsubdird 12083 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) / 𝑚) = ((𝑚 / 𝑚) − (1 / 𝑚))) |
| 168 | 167 | oveq1d 7447 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) / 𝑚) · (𝑥‘𝑖)) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) |
| 169 | 166, 168 | eqtrd 2776 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) |
| 170 | 165, 169 | oveq12d 7450 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥‘𝑖)) / 𝑚)) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖)))) |
| 171 | 164, 170 | eqtrd 2776 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖)))) |
| 172 | 171 | eqeq2d 2747 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) / 𝑚) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
| 173 | 150, 163,
172 | 3bitr3d 309 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) + ((𝑚 − 1) · (𝑥‘𝑖))) = (𝑚 · (𝑝‘𝑖)) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
| 174 | 143, 148,
173 | 3bitr3d 309 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = (𝑦‘𝑖) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
| 175 | 123, 174 | bitrid 283 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))))) |
| 176 | 130, 162 | reccld 12037 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℂ) |
| 177 | 176, 126 | mulcld 11282 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑚) · (𝑦‘𝑖)) ∈ ℂ) |
| 178 | 127, 176 | subcld 11621 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / 𝑚)) ∈ ℂ) |
| 179 | 178, 134 | mulcld 11282 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / 𝑚)) · (𝑥‘𝑖)) ∈ ℂ) |
| 180 | 130, 162 | dividd 12042 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 / 𝑚) = 1) |
| 181 | 180 | oveq1d 7447 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 / 𝑚) − (1 / 𝑚)) = (1 − (1 / 𝑚))) |
| 182 | 181 | oveq1d 7447 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖)) = ((1 − (1 / 𝑚)) · (𝑥‘𝑖))) |
| 183 | 182 | oveq2d 7448 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) = (((1 / 𝑚) · (𝑦‘𝑖)) + ((1 − (1 / 𝑚)) · (𝑥‘𝑖)))) |
| 184 | 177, 179,
183 | comraddd 11476 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖)))) |
| 185 | 184 | eqeq2d 2747 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
| 186 | 185 | biimpd 229 |
. . . . . . 7
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 / 𝑚) · (𝑦‘𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥‘𝑖))) → (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
| 187 | 175, 186 | sylbid 240 |
. . . . . 6
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → (𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
| 188 | 187 | ralimdva 3166 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → (∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖))))) |
| 189 | 188 | imp 406 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − (1 / 𝑚)) · (𝑥‘𝑖)) + ((1 / 𝑚) · (𝑦‘𝑖)))) |
| 190 | 115, 122,
189 | rspcedvd 3623 |
. . 3
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧
∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
| 191 | 190 | rexlimdva2 3156 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → (∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 192 | 11, 105, 191 | 3jaod 1430 |
1
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |