Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnmlem1 Structured version   Visualization version   GIF version

Theorem eenglngeehlnmlem1 48471
Description: Lemma 1 for eenglngeehlnm 48473. (Contributed by AV, 15-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnmlem1 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
Distinct variable group:   𝑖,𝑁,𝑘,𝑙,𝑚,𝑝,𝑡,𝑥,𝑦

Proof of Theorem eenglngeehlnmlem1
StepHypRef Expression
1 oveq2 7456 . . . . . . . 8 (𝑘 = 𝑡 → (1 − 𝑘) = (1 − 𝑡))
21oveq1d 7463 . . . . . . 7 (𝑘 = 𝑡 → ((1 − 𝑘) · (𝑥𝑖)) = ((1 − 𝑡) · (𝑥𝑖)))
3 oveq1 7455 . . . . . . 7 (𝑘 = 𝑡 → (𝑘 · (𝑦𝑖)) = (𝑡 · (𝑦𝑖)))
42, 3oveq12d 7466 . . . . . 6 (𝑘 = 𝑡 → (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
54eqeq2d 2751 . . . . 5 (𝑘 = 𝑡 → ((𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
65ralbidv 3184 . . . 4 (𝑘 = 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
76cbvrexvw 3244 . . 3 (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
8 unitssre 13559 . . . 4 (0[,]1) ⊆ ℝ
9 ssrexv 4078 . . . 4 ((0[,]1) ⊆ ℝ → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
108, 9mp1i 13 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
117, 10biimtrid 242 . 2 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
12 0re 11292 . . . . . . . 8 0 ∈ ℝ
13 1xr 11349 . . . . . . . 8 1 ∈ ℝ*
14 elico2 13471 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1)))
1512, 13, 14mp2an 691 . . . . . . 7 (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1))
16 simp1 1136 . . . . . . . 8 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 𝑙 ∈ ℝ)
17 1red 11291 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 1 ∈ ℝ)
1817, 16resubcld 11718 . . . . . . . 8 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → (1 − 𝑙) ∈ ℝ)
19 1cnd 11285 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 1 ∈ ℂ)
2016recnd 11318 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 𝑙 ∈ ℂ)
21 ltne 11387 . . . . . . . . . 10 ((𝑙 ∈ ℝ ∧ 𝑙 < 1) → 1 ≠ 𝑙)
22213adant2 1131 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 1 ≠ 𝑙)
2319, 20, 22subne0d 11656 . . . . . . . 8 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → (1 − 𝑙) ≠ 0)
2416, 18, 23redivcld 12122 . . . . . . 7 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → (𝑙 / (1 − 𝑙)) ∈ ℝ)
2515, 24sylbi 217 . . . . . 6 (𝑙 ∈ (0[,)1) → (𝑙 / (1 − 𝑙)) ∈ ℝ)
2625ad2antlr 726 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → (𝑙 / (1 − 𝑙)) ∈ ℝ)
2726renegcld 11717 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → -(𝑙 / (1 − 𝑙)) ∈ ℝ)
28 oveq2 7456 . . . . . . . . 9 (𝑡 = -(𝑙 / (1 − 𝑙)) → (1 − 𝑡) = (1 − -(𝑙 / (1 − 𝑙))))
2928oveq1d 7463 . . . . . . . 8 (𝑡 = -(𝑙 / (1 − 𝑙)) → ((1 − 𝑡) · (𝑥𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)))
30 oveq1 7455 . . . . . . . 8 (𝑡 = -(𝑙 / (1 − 𝑙)) → (𝑡 · (𝑦𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
3129, 30oveq12d 7466 . . . . . . 7 (𝑡 = -(𝑙 / (1 − 𝑙)) → (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
3231eqeq2d 2751 . . . . . 6 (𝑡 = -(𝑙 / (1 − 𝑙)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
3332ralbidv 3184 . . . . 5 (𝑡 = -(𝑙 / (1 − 𝑙)) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
3433adantl 481 . . . 4 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) ∧ 𝑡 = -(𝑙 / (1 − 𝑙))) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
35 eqcom 2747 . . . . . . . 8 ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) = (𝑥𝑖))
36 elmapi 8907 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ ↑m (1...𝑁)) → 𝑥:(1...𝑁)⟶ℝ)
37363ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ)
3837ad2antrr 725 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑥:(1...𝑁)⟶ℝ)
3938ffvelcdmda 7118 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℝ)
4039recnd 11318 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℂ)
4115, 16sylbi 217 . . . . . . . . . . . 12 (𝑙 ∈ (0[,)1) → 𝑙 ∈ ℝ)
4241ad2antlr 726 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℝ)
4342recnd 11318 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℂ)
44 eldifi 4154 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) → 𝑦 ∈ (ℝ ↑m (1...𝑁)))
45 elmapi 8907 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℝ ↑m (1...𝑁)) → 𝑦:(1...𝑁)⟶ℝ)
4644, 45syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ)
47463ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ)
4847ad2antrr 725 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑦:(1...𝑁)⟶ℝ)
4948ffvelcdmda 7118 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℝ)
5049recnd 11318 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℂ)
5143, 50mulcld 11310 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 · (𝑦𝑖)) ∈ ℂ)
52 1cnd 11285 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ)
5352, 43subcld 11647 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ∈ ℂ)
54 elmapi 8907 . . . . . . . . . . . . 13 (𝑝 ∈ (ℝ ↑m (1...𝑁)) → 𝑝:(1...𝑁)⟶ℝ)
5554ad2antlr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑝:(1...𝑁)⟶ℝ)
5655ffvelcdmda 7118 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℝ)
5756recnd 11318 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℂ)
5853, 57mulcld 11310 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · (𝑝𝑖)) ∈ ℂ)
5940, 51, 58subadd2d 11666 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) ↔ (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) = (𝑥𝑖)))
6035, 59bitr4id 290 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖))))
61 eqcom 2747 . . . . . . . . 9 (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) ↔ ((1 − 𝑙) · (𝑝𝑖)) = ((𝑥𝑖) − (𝑙 · (𝑦𝑖))))
6240, 51subcld 11647 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) − (𝑙 · (𝑦𝑖))) ∈ ℂ)
6315, 22sylbi 217 . . . . . . . . . . . 12 (𝑙 ∈ (0[,)1) → 1 ≠ 𝑙)
6463ad2antlr 726 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ≠ 𝑙)
6552, 43, 64subne0d 11656 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ≠ 0)
6662, 53, 57, 65divmuld 12092 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) ↔ ((1 − 𝑙) · (𝑝𝑖)) = ((𝑥𝑖) − (𝑙 · (𝑦𝑖)))))
6761, 66bitr4id 290 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) ↔ (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖)))
68 eqcom 2747 . . . . . . . . . 10 ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)))
6940, 51, 53, 65divsubdird 12109 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (((𝑥𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦𝑖)) / (1 − 𝑙))))
7040, 53, 65divrec2d 12074 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) / (1 − 𝑙)) = ((1 / (1 − 𝑙)) · (𝑥𝑖)))
7143, 50, 53, 65div23d 12107 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 · (𝑦𝑖)) / (1 − 𝑙)) = ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
7270, 71oveq12d 7466 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦𝑖)) / (1 − 𝑙))) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
7369, 72eqtrd 2780 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
7473eqeq2d 2751 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) ↔ (𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
7568, 74bitrid 283 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) ↔ (𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
7643, 53, 65divcld 12070 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 / (1 − 𝑙)) ∈ ℂ)
7776, 50mulneg1d 11743 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)) = -((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
7877eqcomd 2746 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → -((𝑙 / (1 − 𝑙)) · (𝑦𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
7978oveq2d 7464 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
8053, 65reccld 12063 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) ∈ ℂ)
8180, 40mulcld 11310 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥𝑖)) ∈ ℂ)
8276, 50mulcld 11310 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)) ∈ ℂ)
8381, 82negsubd 11653 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
8452, 76subnegd 11654 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 + (𝑙 / (1 − 𝑙))))
85 muldivdir 11987 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑙 ∈ ℂ ∧ ((1 − 𝑙) ∈ ℂ ∧ (1 − 𝑙) ≠ 0)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙))))
8652, 43, 53, 65, 85syl112anc 1374 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙))))
8753mulridd 11307 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · 1) = (1 − 𝑙))
8887oveq1d 7463 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = ((1 − 𝑙) + 𝑙))
8952, 43npcand 11651 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) + 𝑙) = 1)
9088, 89eqtrd 2780 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = 1)
9190oveq1d 7463 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 / (1 − 𝑙)))
9284, 86, 913eqtr2d 2786 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 / (1 − 𝑙)))
9392eqcomd 2746 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) = (1 − -(𝑙 / (1 − 𝑙))))
9493oveq1d 7463 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)))
9594oveq1d 7463 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
9679, 83, 953eqtr3d 2788 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
9796eqeq2d 2751 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
9897biimpd 229 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
9975, 98sylbid 240 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
10067, 99sylbid 240 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
10160, 100sylbid 240 . . . . . 6 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
102101ralimdva 3173 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
103102imp 406 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
10427, 34, 103rspcedvd 3637 . . 3 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
105104rexlimdva2 3163 . 2 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
106 0xr 11337 . . . . . . 7 0 ∈ ℝ*
107 1re 11290 . . . . . . 7 1 ∈ ℝ
108 elioc2 13470 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1)))
109106, 107, 108mp2an 691 . . . . . 6 (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1))
110 simp1 1136 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1) → 𝑚 ∈ ℝ)
111 gt0ne0 11755 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 0 < 𝑚) → 𝑚 ≠ 0)
1121113adant3 1132 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1) → 𝑚 ≠ 0)
113110, 112rereccld 12121 . . . . . 6 ((𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1) → (1 / 𝑚) ∈ ℝ)
114109, 113sylbi 217 . . . . 5 (𝑚 ∈ (0(,]1) → (1 / 𝑚) ∈ ℝ)
115114ad2antlr 726 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → (1 / 𝑚) ∈ ℝ)
116 oveq2 7456 . . . . . . . . 9 (𝑡 = (1 / 𝑚) → (1 − 𝑡) = (1 − (1 / 𝑚)))
117116oveq1d 7463 . . . . . . . 8 (𝑡 = (1 / 𝑚) → ((1 − 𝑡) · (𝑥𝑖)) = ((1 − (1 / 𝑚)) · (𝑥𝑖)))
118 oveq1 7455 . . . . . . . 8 (𝑡 = (1 / 𝑚) → (𝑡 · (𝑦𝑖)) = ((1 / 𝑚) · (𝑦𝑖)))
119117, 118oveq12d 7466 . . . . . . 7 (𝑡 = (1 / 𝑚) → (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖))))
120119eqeq2d 2751 . . . . . 6 (𝑡 = (1 / 𝑚) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
121120ralbidv 3184 . . . . 5 (𝑡 = (1 / 𝑚) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
122121adantl 481 . . . 4 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) ∧ 𝑡 = (1 / 𝑚)) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
123 eqcom 2747 . . . . . . . 8 ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = (𝑦𝑖))
12447ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑦:(1...𝑁)⟶ℝ)
125124ffvelcdmda 7118 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℝ)
126125recnd 11318 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℂ)
127 1cnd 11285 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ)
128109, 110sylbi 217 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (0(,]1) → 𝑚 ∈ ℝ)
129128recnd 11318 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0(,]1) → 𝑚 ∈ ℂ)
130129ad2antlr 726 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ∈ ℂ)
131127, 130subcld 11647 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑚) ∈ ℂ)
13237ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑥:(1...𝑁)⟶ℝ)
133132ffvelcdmda 7118 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℝ)
134133recnd 11318 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℂ)
135131, 134mulcld 11310 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑚) · (𝑥𝑖)) ∈ ℂ)
136126, 135negsubd 11653 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) + -((1 − 𝑚) · (𝑥𝑖))) = ((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))))
137131, 134mulneg1d 11743 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥𝑖)) = -((1 − 𝑚) · (𝑥𝑖)))
138127, 130negsubdi2d 11663 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − 𝑚) = (𝑚 − 1))
139138oveq1d 7463 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥𝑖)) = ((𝑚 − 1) · (𝑥𝑖)))
140137, 139eqtr3d 2782 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -((1 − 𝑚) · (𝑥𝑖)) = ((𝑚 − 1) · (𝑥𝑖)))
141140oveq2d 7464 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) + -((1 − 𝑚) · (𝑥𝑖))) = ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))))
142136, 141eqtr3d 2782 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))) = ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))))
143142eqeq1d 2742 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖)) ↔ ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖))))
14454ad2antlr 726 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑝:(1...𝑁)⟶ℝ)
145144ffvelcdmda 7118 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℝ)
146145recnd 11318 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℂ)
147130, 146mulcld 11310 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 · (𝑝𝑖)) ∈ ℂ)
148126, 135, 147subaddd 11665 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖)) ↔ (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = (𝑦𝑖)))
149 eqcom 2747 . . . . . . . . . . 11 ((((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚))
150149a1i 11 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚)))
151130, 127subcld 11647 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 − 1) ∈ ℂ)
152151, 134mulcld 11310 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) · (𝑥𝑖)) ∈ ℂ)
153126, 152addcld 11309 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) ∈ ℂ)
154 elioc1 13449 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1)))
155106, 13, 154mp2an 691 . . . . . . . . . . . . 13 (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1))
15612a1i 11 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℝ* → 0 ∈ ℝ)
157156anim1i 614 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ* ∧ 0 < 𝑚) → (0 ∈ ℝ ∧ 0 < 𝑚))
1581573adant3 1132 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1) → (0 ∈ ℝ ∧ 0 < 𝑚))
159 ltne 11387 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 < 𝑚) → 𝑚 ≠ 0)
160158, 159syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1) → 𝑚 ≠ 0)
161155, 160sylbi 217 . . . . . . . . . . . 12 (𝑚 ∈ (0(,]1) → 𝑚 ≠ 0)
162161ad2antlr 726 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ≠ 0)
163153, 146, 130, 162divmul2d 12103 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (𝑝𝑖) ↔ ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖))))
164126, 152, 130, 162divdird 12108 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (((𝑦𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥𝑖)) / 𝑚)))
165126, 130, 162divrec2d 12074 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) / 𝑚) = ((1 / 𝑚) · (𝑦𝑖)))
166151, 134, 130, 162div23d 12107 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥𝑖)) / 𝑚) = (((𝑚 − 1) / 𝑚) · (𝑥𝑖)))
167130, 127, 130, 162divsubdird 12109 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) / 𝑚) = ((𝑚 / 𝑚) − (1 / 𝑚)))
168167oveq1d 7463 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) / 𝑚) · (𝑥𝑖)) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))
169166, 168eqtrd 2780 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥𝑖)) / 𝑚) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))
170165, 169oveq12d 7466 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥𝑖)) / 𝑚)) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))))
171164, 170eqtrd 2780 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))))
172171eqeq2d 2751 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
173150, 163, 1723bitr3d 309 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖)) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
174143, 148, 1733bitr3d 309 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = (𝑦𝑖) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
175123, 174bitrid 283 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
176130, 162reccld 12063 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℂ)
177176, 126mulcld 11310 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑚) · (𝑦𝑖)) ∈ ℂ)
178127, 176subcld 11647 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / 𝑚)) ∈ ℂ)
179178, 134mulcld 11310 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / 𝑚)) · (𝑥𝑖)) ∈ ℂ)
180130, 162dividd 12068 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 / 𝑚) = 1)
181180oveq1d 7463 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 / 𝑚) − (1 / 𝑚)) = (1 − (1 / 𝑚)))
182181oveq1d 7463 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)) = ((1 − (1 / 𝑚)) · (𝑥𝑖)))
183182oveq2d 7464 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) = (((1 / 𝑚) · (𝑦𝑖)) + ((1 − (1 / 𝑚)) · (𝑥𝑖))))
184177, 179, 183comraddd 11504 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖))))
185184eqeq2d 2751 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) ↔ (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
186185biimpd 229 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) → (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
187175, 186sylbid 240 . . . . . 6 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
188187ralimdva 3173 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → (∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
189188imp 406 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖))))
190115, 122, 189rspcedvd 3637 . . 3 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
191190rexlimdva2 3163 . 2 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
19211, 105, 1913jaod 1429 1 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  *cxr 11323   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  (,]cioc 13408  [,)cico 13409  [,]cicc 13410  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-ioc 13412  df-ico 13413  df-icc 13414
This theorem is referenced by:  eenglngeehlnm  48473
  Copyright terms: Public domain W3C validator