Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnmlem1 Structured version   Visualization version   GIF version

Theorem eenglngeehlnmlem1 45971
Description: Lemma 1 for eenglngeehlnm 45973. (Contributed by AV, 15-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnmlem1 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
Distinct variable group:   𝑖,𝑁,𝑘,𝑙,𝑚,𝑝,𝑡,𝑥,𝑦

Proof of Theorem eenglngeehlnmlem1
StepHypRef Expression
1 oveq2 7263 . . . . . . . 8 (𝑘 = 𝑡 → (1 − 𝑘) = (1 − 𝑡))
21oveq1d 7270 . . . . . . 7 (𝑘 = 𝑡 → ((1 − 𝑘) · (𝑥𝑖)) = ((1 − 𝑡) · (𝑥𝑖)))
3 oveq1 7262 . . . . . . 7 (𝑘 = 𝑡 → (𝑘 · (𝑦𝑖)) = (𝑡 · (𝑦𝑖)))
42, 3oveq12d 7273 . . . . . 6 (𝑘 = 𝑡 → (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
54eqeq2d 2749 . . . . 5 (𝑘 = 𝑡 → ((𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
65ralbidv 3120 . . . 4 (𝑘 = 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
76cbvrexvw 3373 . . 3 (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
8 unitssre 13160 . . . 4 (0[,]1) ⊆ ℝ
9 ssrexv 3984 . . . 4 ((0[,]1) ⊆ ℝ → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
108, 9mp1i 13 . . 3 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
117, 10syl5bi 241 . 2 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
12 0re 10908 . . . . . . . 8 0 ∈ ℝ
13 1xr 10965 . . . . . . . 8 1 ∈ ℝ*
14 elico2 13072 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1)))
1512, 13, 14mp2an 688 . . . . . . 7 (𝑙 ∈ (0[,)1) ↔ (𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1))
16 simp1 1134 . . . . . . . 8 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 𝑙 ∈ ℝ)
17 1red 10907 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 1 ∈ ℝ)
1817, 16resubcld 11333 . . . . . . . 8 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → (1 − 𝑙) ∈ ℝ)
19 1cnd 10901 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 1 ∈ ℂ)
2016recnd 10934 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 𝑙 ∈ ℂ)
21 ltne 11002 . . . . . . . . . 10 ((𝑙 ∈ ℝ ∧ 𝑙 < 1) → 1 ≠ 𝑙)
22213adant2 1129 . . . . . . . . 9 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → 1 ≠ 𝑙)
2319, 20, 22subne0d 11271 . . . . . . . 8 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → (1 − 𝑙) ≠ 0)
2416, 18, 23redivcld 11733 . . . . . . 7 ((𝑙 ∈ ℝ ∧ 0 ≤ 𝑙𝑙 < 1) → (𝑙 / (1 − 𝑙)) ∈ ℝ)
2515, 24sylbi 216 . . . . . 6 (𝑙 ∈ (0[,)1) → (𝑙 / (1 − 𝑙)) ∈ ℝ)
2625ad2antlr 723 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → (𝑙 / (1 − 𝑙)) ∈ ℝ)
2726renegcld 11332 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → -(𝑙 / (1 − 𝑙)) ∈ ℝ)
28 oveq2 7263 . . . . . . . . 9 (𝑡 = -(𝑙 / (1 − 𝑙)) → (1 − 𝑡) = (1 − -(𝑙 / (1 − 𝑙))))
2928oveq1d 7270 . . . . . . . 8 (𝑡 = -(𝑙 / (1 − 𝑙)) → ((1 − 𝑡) · (𝑥𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)))
30 oveq1 7262 . . . . . . . 8 (𝑡 = -(𝑙 / (1 − 𝑙)) → (𝑡 · (𝑦𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
3129, 30oveq12d 7273 . . . . . . 7 (𝑡 = -(𝑙 / (1 − 𝑙)) → (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
3231eqeq2d 2749 . . . . . 6 (𝑡 = -(𝑙 / (1 − 𝑙)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
3332ralbidv 3120 . . . . 5 (𝑡 = -(𝑙 / (1 − 𝑙)) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
3433adantl 481 . . . 4 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) ∧ 𝑡 = -(𝑙 / (1 − 𝑙))) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
35 eqcom 2745 . . . . . . . 8 ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) = (𝑥𝑖))
36 elmapi 8595 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ ↑m (1...𝑁)) → 𝑥:(1...𝑁)⟶ℝ)
37363ad2ant2 1132 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ)
3837ad2antrr 722 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑥:(1...𝑁)⟶ℝ)
3938ffvelrnda 6943 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℝ)
4039recnd 10934 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℂ)
4115, 16sylbi 216 . . . . . . . . . . . 12 (𝑙 ∈ (0[,)1) → 𝑙 ∈ ℝ)
4241ad2antlr 723 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℝ)
4342recnd 10934 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑙 ∈ ℂ)
44 eldifi 4057 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) → 𝑦 ∈ (ℝ ↑m (1...𝑁)))
45 elmapi 8595 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ℝ ↑m (1...𝑁)) → 𝑦:(1...𝑁)⟶ℝ)
4644, 45syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ)
47463ad2ant3 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ)
4847ad2antrr 722 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑦:(1...𝑁)⟶ℝ)
4948ffvelrnda 6943 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℝ)
5049recnd 10934 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℂ)
5143, 50mulcld 10926 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 · (𝑦𝑖)) ∈ ℂ)
52 1cnd 10901 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ)
5352, 43subcld 11262 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ∈ ℂ)
54 elmapi 8595 . . . . . . . . . . . . 13 (𝑝 ∈ (ℝ ↑m (1...𝑁)) → 𝑝:(1...𝑁)⟶ℝ)
5554ad2antlr 723 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → 𝑝:(1...𝑁)⟶ℝ)
5655ffvelrnda 6943 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℝ)
5756recnd 10934 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℂ)
5853, 57mulcld 10926 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · (𝑝𝑖)) ∈ ℂ)
5940, 51, 58subadd2d 11281 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) ↔ (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) = (𝑥𝑖)))
6035, 59bitr4id 289 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖))))
61 eqcom 2745 . . . . . . . . 9 (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) ↔ ((1 − 𝑙) · (𝑝𝑖)) = ((𝑥𝑖) − (𝑙 · (𝑦𝑖))))
6240, 51subcld 11262 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) − (𝑙 · (𝑦𝑖))) ∈ ℂ)
6315, 22sylbi 216 . . . . . . . . . . . 12 (𝑙 ∈ (0[,)1) → 1 ≠ 𝑙)
6463ad2antlr 723 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ≠ 𝑙)
6552, 43, 64subne0d 11271 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑙) ≠ 0)
6662, 53, 57, 65divmuld 11703 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) ↔ ((1 − 𝑙) · (𝑝𝑖)) = ((𝑥𝑖) − (𝑙 · (𝑦𝑖)))))
6761, 66bitr4id 289 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) ↔ (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖)))
68 eqcom 2745 . . . . . . . . . 10 ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)))
6940, 51, 53, 65divsubdird 11720 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (((𝑥𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦𝑖)) / (1 − 𝑙))))
7040, 53, 65divrec2d 11685 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) / (1 − 𝑙)) = ((1 / (1 − 𝑙)) · (𝑥𝑖)))
7143, 50, 53, 65div23d 11718 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 · (𝑦𝑖)) / (1 − 𝑙)) = ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
7270, 71oveq12d 7273 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) / (1 − 𝑙)) − ((𝑙 · (𝑦𝑖)) / (1 − 𝑙))) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
7369, 72eqtrd 2778 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
7473eqeq2d 2749 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) ↔ (𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
7568, 74syl5bb 282 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) ↔ (𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
7643, 53, 65divcld 11681 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑙 / (1 − 𝑙)) ∈ ℂ)
7776, 50mulneg1d 11358 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)) = -((𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
7877eqcomd 2744 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → -((𝑙 / (1 − 𝑙)) · (𝑦𝑖)) = (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))
7978oveq2d 7271 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
8053, 65reccld 11674 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) ∈ ℂ)
8180, 40mulcld 10926 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥𝑖)) ∈ ℂ)
8276, 50mulcld 10926 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑙 / (1 − 𝑙)) · (𝑦𝑖)) ∈ ℂ)
8381, 82negsubd 11268 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) + -((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
8452, 76subnegd 11269 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 + (𝑙 / (1 − 𝑙))))
85 muldivdir 11598 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝑙 ∈ ℂ ∧ ((1 − 𝑙) ∈ ℂ ∧ (1 − 𝑙) ≠ 0)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙))))
8652, 43, 53, 65, 85syl112anc 1372 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 + (𝑙 / (1 − 𝑙))))
8753mulid1d 10923 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) · 1) = (1 − 𝑙))
8887oveq1d 7270 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = ((1 − 𝑙) + 𝑙))
8952, 43npcand 11266 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑙) + 𝑙) = 1)
9088, 89eqtrd 2778 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑙) · 1) + 𝑙) = 1)
9190oveq1d 7270 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑙) · 1) + 𝑙) / (1 − 𝑙)) = (1 / (1 − 𝑙)))
9284, 86, 913eqtr2d 2784 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − -(𝑙 / (1 − 𝑙))) = (1 / (1 − 𝑙)))
9392eqcomd 2744 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑙)) = (1 − -(𝑙 / (1 − 𝑙))))
9493oveq1d 7270 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 − 𝑙)) · (𝑥𝑖)) = ((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)))
9594oveq1d 7270 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
9679, 83, 953eqtr3d 2786 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
9796eqeq2d 2749 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
9897biimpd 228 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / (1 − 𝑙)) · (𝑥𝑖)) − ((𝑙 / (1 − 𝑙)) · (𝑦𝑖))) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
9975, 98sylbid 239 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − (𝑙 · (𝑦𝑖))) / (1 − 𝑙)) = (𝑝𝑖) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
10067, 99sylbid 239 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − (𝑙 · (𝑦𝑖))) = ((1 − 𝑙) · (𝑝𝑖)) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
10160, 100sylbid 239 . . . . . 6 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → (𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
102101ralimdva 3102 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖)))))
103102imp 406 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − -(𝑙 / (1 − 𝑙))) · (𝑥𝑖)) + (-(𝑙 / (1 − 𝑙)) · (𝑦𝑖))))
10427, 34, 103rspcedvd 3555 . . 3 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑙 ∈ (0[,)1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
105104rexlimdva2 3215 . 2 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
106 0xr 10953 . . . . . . 7 0 ∈ ℝ*
107 1re 10906 . . . . . . 7 1 ∈ ℝ
108 elioc2 13071 . . . . . . 7 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1)))
109106, 107, 108mp2an 688 . . . . . 6 (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1))
110 simp1 1134 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1) → 𝑚 ∈ ℝ)
111 gt0ne0 11370 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 0 < 𝑚) → 𝑚 ≠ 0)
1121113adant3 1130 . . . . . . 7 ((𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1) → 𝑚 ≠ 0)
113110, 112rereccld 11732 . . . . . 6 ((𝑚 ∈ ℝ ∧ 0 < 𝑚𝑚 ≤ 1) → (1 / 𝑚) ∈ ℝ)
114109, 113sylbi 216 . . . . 5 (𝑚 ∈ (0(,]1) → (1 / 𝑚) ∈ ℝ)
115114ad2antlr 723 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → (1 / 𝑚) ∈ ℝ)
116 oveq2 7263 . . . . . . . . 9 (𝑡 = (1 / 𝑚) → (1 − 𝑡) = (1 − (1 / 𝑚)))
117116oveq1d 7270 . . . . . . . 8 (𝑡 = (1 / 𝑚) → ((1 − 𝑡) · (𝑥𝑖)) = ((1 − (1 / 𝑚)) · (𝑥𝑖)))
118 oveq1 7262 . . . . . . . 8 (𝑡 = (1 / 𝑚) → (𝑡 · (𝑦𝑖)) = ((1 / 𝑚) · (𝑦𝑖)))
119117, 118oveq12d 7273 . . . . . . 7 (𝑡 = (1 / 𝑚) → (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖))))
120119eqeq2d 2749 . . . . . 6 (𝑡 = (1 / 𝑚) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
121120ralbidv 3120 . . . . 5 (𝑡 = (1 / 𝑚) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
122121adantl 481 . . . 4 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) ∧ 𝑡 = (1 / 𝑚)) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
123 eqcom 2745 . . . . . . . 8 ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = (𝑦𝑖))
12447ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑦:(1...𝑁)⟶ℝ)
125124ffvelrnda 6943 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℝ)
126125recnd 10934 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℂ)
127 1cnd 10901 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ)
128109, 110sylbi 216 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (0(,]1) → 𝑚 ∈ ℝ)
129128recnd 10934 . . . . . . . . . . . . . . 15 (𝑚 ∈ (0(,]1) → 𝑚 ∈ ℂ)
130129ad2antlr 723 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ∈ ℂ)
131127, 130subcld 11262 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑚) ∈ ℂ)
13237ad2antrr 722 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑥:(1...𝑁)⟶ℝ)
133132ffvelrnda 6943 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℝ)
134133recnd 10934 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℂ)
135131, 134mulcld 10926 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑚) · (𝑥𝑖)) ∈ ℂ)
136126, 135negsubd 11268 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) + -((1 − 𝑚) · (𝑥𝑖))) = ((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))))
137131, 134mulneg1d 11358 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥𝑖)) = -((1 − 𝑚) · (𝑥𝑖)))
138127, 130negsubdi2d 11278 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − 𝑚) = (𝑚 − 1))
139138oveq1d 7270 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − 𝑚) · (𝑥𝑖)) = ((𝑚 − 1) · (𝑥𝑖)))
140137, 139eqtr3d 2780 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → -((1 − 𝑚) · (𝑥𝑖)) = ((𝑚 − 1) · (𝑥𝑖)))
141140oveq2d 7271 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) + -((1 − 𝑚) · (𝑥𝑖))) = ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))))
142136, 141eqtr3d 2780 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))) = ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))))
143142eqeq1d 2740 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖)) ↔ ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖))))
14454ad2antlr 723 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → 𝑝:(1...𝑁)⟶ℝ)
145144ffvelrnda 6943 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℝ)
146145recnd 10934 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℂ)
147130, 146mulcld 10926 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 · (𝑝𝑖)) ∈ ℂ)
148126, 135, 147subaddd 11280 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − 𝑚) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖)) ↔ (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = (𝑦𝑖)))
149 eqcom 2745 . . . . . . . . . . 11 ((((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚))
150149a1i 11 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚)))
151130, 127subcld 11262 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 − 1) ∈ ℂ)
152151, 134mulcld 10926 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) · (𝑥𝑖)) ∈ ℂ)
153126, 152addcld 10925 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) ∈ ℂ)
154 elioc1 13050 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1)))
155106, 13, 154mp2an 688 . . . . . . . . . . . . 13 (𝑚 ∈ (0(,]1) ↔ (𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1))
15612a1i 11 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℝ* → 0 ∈ ℝ)
157156anim1i 614 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ* ∧ 0 < 𝑚) → (0 ∈ ℝ ∧ 0 < 𝑚))
1581573adant3 1130 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1) → (0 ∈ ℝ ∧ 0 < 𝑚))
159 ltne 11002 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ 0 < 𝑚) → 𝑚 ≠ 0)
160158, 159syl 17 . . . . . . . . . . . . 13 ((𝑚 ∈ ℝ* ∧ 0 < 𝑚𝑚 ≤ 1) → 𝑚 ≠ 0)
161155, 160sylbi 216 . . . . . . . . . . . 12 (𝑚 ∈ (0(,]1) → 𝑚 ≠ 0)
162161ad2antlr 723 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → 𝑚 ≠ 0)
163153, 146, 130, 162divmul2d 11714 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (𝑝𝑖) ↔ ((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖))))
164126, 152, 130, 162divdird 11719 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (((𝑦𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥𝑖)) / 𝑚)))
165126, 130, 162divrec2d 11685 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) / 𝑚) = ((1 / 𝑚) · (𝑦𝑖)))
166151, 134, 130, 162div23d 11718 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥𝑖)) / 𝑚) = (((𝑚 − 1) / 𝑚) · (𝑥𝑖)))
167130, 127, 130, 162divsubdird 11720 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 − 1) / 𝑚) = ((𝑚 / 𝑚) − (1 / 𝑚)))
168167oveq1d 7270 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) / 𝑚) · (𝑥𝑖)) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))
169166, 168eqtrd 2778 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 − 1) · (𝑥𝑖)) / 𝑚) = (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))
170165, 169oveq12d 7273 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) / 𝑚) + (((𝑚 − 1) · (𝑥𝑖)) / 𝑚)) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))))
171164, 170eqtrd 2778 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))))
172171eqeq2d 2749 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) / 𝑚) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
173150, 163, 1723bitr3d 308 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) + ((𝑚 − 1) · (𝑥𝑖))) = (𝑚 · (𝑝𝑖)) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
174143, 148, 1733bitr3d 308 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = (𝑦𝑖) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
175123, 174syl5bb 282 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)))))
176130, 162reccld 11674 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑚) ∈ ℂ)
177176, 126mulcld 10926 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑚) · (𝑦𝑖)) ∈ ℂ)
178127, 176subcld 11262 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / 𝑚)) ∈ ℂ)
179178, 134mulcld 10926 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / 𝑚)) · (𝑥𝑖)) ∈ ℂ)
180130, 162dividd 11679 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (𝑚 / 𝑚) = 1)
181180oveq1d 7270 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑚 / 𝑚) − (1 / 𝑚)) = (1 − (1 / 𝑚)))
182181oveq1d 7270 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖)) = ((1 − (1 / 𝑚)) · (𝑥𝑖)))
183182oveq2d 7271 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) = (((1 / 𝑚) · (𝑦𝑖)) + ((1 − (1 / 𝑚)) · (𝑥𝑖))))
184177, 179, 183comraddd 11119 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖))))
185184eqeq2d 2749 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) ↔ (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
186185biimpd 228 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 / 𝑚) · (𝑦𝑖)) + (((𝑚 / 𝑚) − (1 / 𝑚)) · (𝑥𝑖))) → (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
187175, 186sylbid 239 . . . . . 6 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → (𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
188187ralimdva 3102 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) → (∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖)))))
189188imp 406 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − (1 / 𝑚)) · (𝑥𝑖)) + ((1 / 𝑚) · (𝑦𝑖))))
190115, 122, 189rspcedvd 3555 . . 3 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑚 ∈ (0(,]1)) ∧ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
191190rexlimdva2 3215 . 2 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
19211, 105, 1913jaod 1426 1 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → ((∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))) → ∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1084  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  (,]cioc 13009  [,)cico 13010  [,]cicc 13011  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-ioc 13013  df-ico 13014  df-icc 13015
This theorem is referenced by:  eenglngeehlnm  45973
  Copyright terms: Public domain W3C validator