Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goldbachth Structured version   Visualization version   GIF version

Theorem goldbachth 47472
Description: Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
goldbachth ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑁𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)

Proof of Theorem goldbachth
StepHypRef Expression
1 nn0re 12533 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 nn0re 12533 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
3 lttri4 11343 . . . 4 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀𝑁 = 𝑀𝑀 < 𝑁))
41, 2, 3syl2an 596 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 < 𝑀𝑁 = 𝑀𝑀 < 𝑁))
543adant3 1131 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑁𝑀) → (𝑁 < 𝑀𝑁 = 𝑀𝑀 < 𝑁))
6 fmtnonn 47456 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
76nnzd 12638 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
8 fmtnonn 47456 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ)
98nnzd 12638 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ)
10 gcdcom 16547 . . . . . . . . 9 (((FermatNo‘𝑁) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)))
117, 9, 10syl2anr 597 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)))
12113adant3 1131 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)))
13 goldbachthlem2 47471 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑁 < 𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)
1412, 13eqtrd 2775 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
15143exp 1118 . . . . 5 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
1615impcom 407 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
17163adant3 1131 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑁𝑀) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
18 eqneqall 2949 . . . . 5 (𝑁 = 𝑀 → (𝑁𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
1918com12 32 . . . 4 (𝑁𝑀 → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
20193ad2ant3 1134 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑁𝑀) → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
21 goldbachthlem2 47471 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
22213expia 1120 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
23223adant3 1131 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑁𝑀) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
2417, 20, 233jaod 1428 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑁𝑀) → ((𝑁 < 𝑀𝑁 = 𝑀𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
255, 24mpd 15 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑁𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   < clt 11293  0cn0 12524  cz 12611   gcd cgcd 16528  FermatNocfmtno 47452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-dvds 16288  df-gcd 16529  df-prm 16706  df-fmtno 47453
This theorem is referenced by:  prmdvdsfmtnof1lem2  47510
  Copyright terms: Public domain W3C validator