Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > goldbachth | Structured version Visualization version GIF version |
Description: Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
goldbachth | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12242 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | nn0re 12242 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
3 | lttri4 11059 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) |
5 | 4 | 3adant3 1131 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) |
6 | fmtnonn 44983 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | |
7 | 6 | nnzd 12425 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ) |
8 | fmtnonn 44983 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ) | |
9 | 8 | nnzd 12425 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ) |
10 | gcdcom 16220 | . . . . . . . . 9 ⊢ (((FermatNo‘𝑁) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) | |
11 | 7, 9, 10 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) |
12 | 11 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) |
13 | goldbachthlem2 44998 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) | |
14 | 12, 13 | eqtrd 2778 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
15 | 14 | 3exp 1118 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))) |
16 | 15 | impcom 408 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
17 | 16 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
18 | eqneqall 2954 | . . . . 5 ⊢ (𝑁 = 𝑀 → (𝑁 ≠ 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) | |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ≠ 𝑀 → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
20 | 19 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
21 | goldbachthlem2 44998 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | |
22 | 21 | 3expia 1120 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
23 | 22 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
24 | 17, 20, 23 | 3jaod 1427 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
25 | 5, 24 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 1c1 10872 < clt 11009 ℕ0cn0 12233 ℤcz 12319 gcd cgcd 16201 FermatNocfmtno 44979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-prod 15616 df-dvds 15964 df-gcd 16202 df-prm 16377 df-fmtno 44980 |
This theorem is referenced by: prmdvdsfmtnof1lem2 45037 |
Copyright terms: Public domain | W3C validator |