![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goldbachth | Structured version Visualization version GIF version |
Description: Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
goldbachth | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12514 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | nn0re 12514 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
3 | lttri4 11330 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) | |
4 | 1, 2, 3 | syl2an 594 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) |
5 | 4 | 3adant3 1129 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) |
6 | fmtnonn 47008 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | |
7 | 6 | nnzd 12618 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ) |
8 | fmtnonn 47008 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ) | |
9 | 8 | nnzd 12618 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ) |
10 | gcdcom 16491 | . . . . . . . . 9 ⊢ (((FermatNo‘𝑁) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) | |
11 | 7, 9, 10 | syl2anr 595 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) |
12 | 11 | 3adant3 1129 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) |
13 | goldbachthlem2 47023 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) | |
14 | 12, 13 | eqtrd 2765 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
15 | 14 | 3exp 1116 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))) |
16 | 15 | impcom 406 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
17 | 16 | 3adant3 1129 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
18 | eqneqall 2940 | . . . . 5 ⊢ (𝑁 = 𝑀 → (𝑁 ≠ 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) | |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ≠ 𝑀 → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
20 | 19 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
21 | goldbachthlem2 47023 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | |
22 | 21 | 3expia 1118 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
23 | 22 | 3adant3 1129 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
24 | 17, 20, 23 | 3jaod 1425 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
25 | 5, 24 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1083 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 ℝcr 11139 1c1 11141 < clt 11280 ℕ0cn0 12505 ℤcz 12591 gcd cgcd 16472 FermatNocfmtno 47004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-inf2 9666 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9467 df-inf 9468 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-fz 13520 df-fzo 13663 df-seq 14003 df-exp 14063 df-hash 14326 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-clim 15468 df-prod 15886 df-dvds 16235 df-gcd 16473 df-prm 16646 df-fmtno 47005 |
This theorem is referenced by: prmdvdsfmtnof1lem2 47062 |
Copyright terms: Public domain | W3C validator |