![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > goldbachth | Structured version Visualization version GIF version |
Description: Goldbach's theorem: Two different Fermat numbers are coprime. See ProofWiki "Goldbach's theorem", 31-Jul-2021, https://proofwiki.org/wiki/Goldbach%27s_Theorem or Wikipedia "Fermat number", 31-Jul-2021, https://en.wikipedia.org/wiki/Fermat_number#Basic_properties. (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
goldbachth | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12533 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | nn0re 12533 | . . . 4 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
3 | lttri4 11343 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) |
5 | 4 | 3adant3 1131 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁)) |
6 | fmtnonn 47456 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | |
7 | 6 | nnzd 12638 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ) |
8 | fmtnonn 47456 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ) | |
9 | 8 | nnzd 12638 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ) |
10 | gcdcom 16547 | . . . . . . . . 9 ⊢ (((FermatNo‘𝑁) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) | |
11 | 7, 9, 10 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) |
12 | 11 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = ((FermatNo‘𝑀) gcd (FermatNo‘𝑁))) |
13 | goldbachthlem2 47471 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) | |
14 | 12, 13 | eqtrd 2775 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 < 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
15 | 14 | 3exp 1118 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))) |
16 | 15 | impcom 407 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
17 | 16 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 < 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
18 | eqneqall 2949 | . . . . 5 ⊢ (𝑁 = 𝑀 → (𝑁 ≠ 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) | |
19 | 18 | com12 32 | . . . 4 ⊢ (𝑁 ≠ 𝑀 → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
20 | 19 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑁 = 𝑀 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
21 | goldbachthlem2 47471 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) | |
22 | 21 | 3expia 1120 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
23 | 22 | 3adant3 1131 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → (𝑀 < 𝑁 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
24 | 17, 20, 23 | 3jaod 1428 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((𝑁 < 𝑀 ∨ 𝑁 = 𝑀 ∨ 𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)) |
25 | 5, 24 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ 𝑁 ≠ 𝑀) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 < clt 11293 ℕ0cn0 12524 ℤcz 12611 gcd cgcd 16528 FermatNocfmtno 47452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-prod 15937 df-dvds 16288 df-gcd 16529 df-prm 16706 df-fmtno 47453 |
This theorem is referenced by: prmdvdsfmtnof1lem2 47510 |
Copyright terms: Public domain | W3C validator |