MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem7 Structured version   Visualization version   GIF version

Theorem negsproplem7 27508
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis unconditionally. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
Assertion
Ref Expression
negsproplem7 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem7
StepHypRef Expression
1 bdayelon 27278 . . . 4 ( bday 𝐴) ∈ On
21onordi 6476 . . 3 Ord ( bday 𝐴)
3 bdayelon 27278 . . . 4 ( bday 𝐵) ∈ On
43onordi 6476 . . 3 Ord ( bday 𝐵)
5 ordtri3or 6397 . . 3 ((Ord ( bday 𝐴) ∧ Ord ( bday 𝐵)) → (( bday 𝐴) ∈ ( bday 𝐵) ∨ ( bday 𝐴) = ( bday 𝐵) ∨ ( bday 𝐵) ∈ ( bday 𝐴)))
62, 4, 5mp2an 691 . 2 (( bday 𝐴) ∈ ( bday 𝐵) ∨ ( bday 𝐴) = ( bday 𝐵) ∨ ( bday 𝐵) ∈ ( bday 𝐴))
7 negsproplem.1 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
87adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) ∈ ( bday 𝐵)) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
9 negsproplem4.1 . . . . . 6 (𝜑𝐴 No )
109adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) ∈ ( bday 𝐵)) → 𝐴 No )
11 negsproplem4.2 . . . . . 6 (𝜑𝐵 No )
1211adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) ∈ ( bday 𝐵)) → 𝐵 No )
13 negsproplem4.3 . . . . . 6 (𝜑𝐴 <s 𝐵)
1413adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) ∈ ( bday 𝐵)) → 𝐴 <s 𝐵)
15 simpr 486 . . . . 5 ((𝜑 ∧ ( bday 𝐴) ∈ ( bday 𝐵)) → ( bday 𝐴) ∈ ( bday 𝐵))
168, 10, 12, 14, 15negsproplem4 27505 . . . 4 ((𝜑 ∧ ( bday 𝐴) ∈ ( bday 𝐵)) → ( -us𝐵) <s ( -us𝐴))
1716ex 414 . . 3 (𝜑 → (( bday 𝐴) ∈ ( bday 𝐵) → ( -us𝐵) <s ( -us𝐴)))
187adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) = ( bday 𝐵)) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
199adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 No )
2011adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐵 No )
2113adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐴) = ( bday 𝐵)) → 𝐴 <s 𝐵)
22 simpr 486 . . . . 5 ((𝜑 ∧ ( bday 𝐴) = ( bday 𝐵)) → ( bday 𝐴) = ( bday 𝐵))
2318, 19, 20, 21, 22negsproplem6 27507 . . . 4 ((𝜑 ∧ ( bday 𝐴) = ( bday 𝐵)) → ( -us𝐵) <s ( -us𝐴))
2423ex 414 . . 3 (𝜑 → (( bday 𝐴) = ( bday 𝐵) → ( -us𝐵) <s ( -us𝐴)))
257adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
269adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐴 No )
2711adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐵 No )
2813adantr 482 . . . . 5 ((𝜑 ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → 𝐴 <s 𝐵)
29 simpr 486 . . . . 5 ((𝜑 ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → ( bday 𝐵) ∈ ( bday 𝐴))
3025, 26, 27, 28, 29negsproplem5 27506 . . . 4 ((𝜑 ∧ ( bday 𝐵) ∈ ( bday 𝐴)) → ( -us𝐵) <s ( -us𝐴))
3130ex 414 . . 3 (𝜑 → (( bday 𝐵) ∈ ( bday 𝐴) → ( -us𝐵) <s ( -us𝐴)))
3217, 24, 313jaod 1429 . 2 (𝜑 → ((( bday 𝐴) ∈ ( bday 𝐵) ∨ ( bday 𝐴) = ( bday 𝐵) ∨ ( bday 𝐵) ∈ ( bday 𝐴)) → ( -us𝐵) <s ( -us𝐴)))
336, 32mpi 20 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3o 1087   = wceq 1542  wcel 2107  wral 3062  cun 3947   class class class wbr 5149  Ord word 6364  cfv 6544   No csur 27143   <s cslt 27144   bday cbday 27145   -us cnegs 27494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-1o 8466  df-2o 8467  df-no 27146  df-slt 27147  df-bday 27148  df-sslt 27283  df-scut 27285  df-0s 27325  df-made 27342  df-old 27343  df-left 27345  df-right 27346  df-norec 27422  df-negs 27496
This theorem is referenced by:  negsprop  27509
  Copyright terms: Public domain W3C validator