MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numsuc Structured version   Visualization version   GIF version

Theorem numsuc 12745
Description: The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numnncl.1 𝑇 ∈ ℕ0
numnncl.2 𝐴 ∈ ℕ0
numcl.2 𝐵 ∈ ℕ0
numsuc.4 (𝐵 + 1) = 𝐶
numsuc.5 𝑁 = ((𝑇 · 𝐴) + 𝐵)
Assertion
Ref Expression
numsuc (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)

Proof of Theorem numsuc
StepHypRef Expression
1 numsuc.5 . . 3 𝑁 = ((𝑇 · 𝐴) + 𝐵)
21oveq1i 7441 . 2 (𝑁 + 1) = (((𝑇 · 𝐴) + 𝐵) + 1)
3 numnncl.1 . . . . 5 𝑇 ∈ ℕ0
4 numnncl.2 . . . . 5 𝐴 ∈ ℕ0
53, 4nn0mulcli 12562 . . . 4 (𝑇 · 𝐴) ∈ ℕ0
65nn0cni 12536 . . 3 (𝑇 · 𝐴) ∈ ℂ
7 numcl.2 . . . 4 𝐵 ∈ ℕ0
87nn0cni 12536 . . 3 𝐵 ∈ ℂ
9 ax-1cn 11211 . . 3 1 ∈ ℂ
106, 8, 9addassi 11269 . 2 (((𝑇 · 𝐴) + 𝐵) + 1) = ((𝑇 · 𝐴) + (𝐵 + 1))
11 numsuc.4 . . 3 (𝐵 + 1) = 𝐶
1211oveq2i 7442 . 2 ((𝑇 · 𝐴) + (𝐵 + 1)) = ((𝑇 · 𝐴) + 𝐶)
132, 10, 123eqtri 2767 1 (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  (class class class)co 7431  1c1 11154   + caddc 11156   · cmul 11158  0cn0 12524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-nn 12265  df-n0 12525
This theorem is referenced by:  decsuc  12762  numsucc  12771  decbin3  12873
  Copyright terms: Public domain W3C validator