Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dp3mul10 | Structured version Visualization version GIF version |
Description: Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dp3mul10.a | ⊢ 𝐴 ∈ ℕ0 |
dp3mul10.b | ⊢ 𝐵 ∈ ℕ0 |
dp3mul10.c | ⊢ 𝐶 ∈ ℝ |
Ref | Expression |
---|---|
dp3mul10 | ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dp3mul10.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | dp3mul10.b | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 12323 | . . . 4 ⊢ 𝐵 ∈ ℝ |
4 | dp3mul10.c | . . . 4 ⊢ 𝐶 ∈ ℝ | |
5 | dp2cl 31285 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → _𝐵𝐶 ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 689 | . . 3 ⊢ _𝐵𝐶 ∈ ℝ |
7 | 1, 6 | dpmul10 31300 | . 2 ⊢ ((𝐴._𝐵𝐶) · ;10) = ;𝐴_𝐵𝐶 |
8 | dfdec10 12519 | . 2 ⊢ ;𝐴_𝐵𝐶 = ((;10 · 𝐴) + _𝐵𝐶) | |
9 | 10nn 12532 | . . . . . . 7 ⊢ ;10 ∈ ℕ | |
10 | 9 | nncni 12062 | . . . . . 6 ⊢ ;10 ∈ ℂ |
11 | 1 | nn0cni 12324 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
12 | 10, 11 | mulcli 11061 | . . . . 5 ⊢ (;10 · 𝐴) ∈ ℂ |
13 | 3 | recni 11068 | . . . . 5 ⊢ 𝐵 ∈ ℂ |
14 | 4 | recni 11068 | . . . . . 6 ⊢ 𝐶 ∈ ℂ |
15 | 9 | nnne0i 12092 | . . . . . 6 ⊢ ;10 ≠ 0 |
16 | 14, 10, 15 | divcli 11796 | . . . . 5 ⊢ (𝐶 / ;10) ∈ ℂ |
17 | 12, 13, 16 | addassi 11064 | . . . 4 ⊢ (((;10 · 𝐴) + 𝐵) + (𝐶 / ;10)) = ((;10 · 𝐴) + (𝐵 + (𝐶 / ;10))) |
18 | dfdec10 12519 | . . . . 5 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
19 | 18 | oveq1i 7326 | . . . 4 ⊢ (;𝐴𝐵 + (𝐶 / ;10)) = (((;10 · 𝐴) + 𝐵) + (𝐶 / ;10)) |
20 | df-dp2 31277 | . . . . 5 ⊢ _𝐵𝐶 = (𝐵 + (𝐶 / ;10)) | |
21 | 20 | oveq2i 7327 | . . . 4 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = ((;10 · 𝐴) + (𝐵 + (𝐶 / ;10))) |
22 | 17, 19, 21 | 3eqtr4ri 2775 | . . 3 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = (;𝐴𝐵 + (𝐶 / ;10)) |
23 | 1, 2 | deccl 12531 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℕ0 |
24 | 23, 4 | dpval2 31298 | . . 3 ⊢ (;𝐴𝐵.𝐶) = (;𝐴𝐵 + (𝐶 / ;10)) |
25 | 22, 24 | eqtr4i 2767 | . 2 ⊢ ((;10 · 𝐴) + _𝐵𝐶) = (;𝐴𝐵.𝐶) |
26 | 7, 8, 25 | 3eqtri 2768 | 1 ⊢ ((𝐴._𝐵𝐶) · ;10) = (;𝐴𝐵.𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7316 ℝcr 10949 0cc0 10950 1c1 10951 + caddc 10953 · cmul 10955 / cdiv 11711 ℕ0cn0 12312 ;cdc 12516 _cdp2 31276 .cdp 31293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-dec 12517 df-dp2 31277 df-dp 31294 |
This theorem is referenced by: dpmul4 31319 |
Copyright terms: Public domain | W3C validator |