Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp3mul10 Structured version   Visualization version   GIF version

Theorem dp3mul10 31303
Description: Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp3mul10.a 𝐴 ∈ ℕ0
dp3mul10.b 𝐵 ∈ ℕ0
dp3mul10.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dp3mul10 ((𝐴.𝐵𝐶) · 10) = (𝐴𝐵.𝐶)

Proof of Theorem dp3mul10
StepHypRef Expression
1 dp3mul10.a . . 3 𝐴 ∈ ℕ0
2 dp3mul10.b . . . . 5 𝐵 ∈ ℕ0
32nn0rei 12323 . . . 4 𝐵 ∈ ℝ
4 dp3mul10.c . . . 4 𝐶 ∈ ℝ
5 dp2cl 31285 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
63, 4, 5mp2an 689 . . 3 𝐵𝐶 ∈ ℝ
71, 6dpmul10 31300 . 2 ((𝐴.𝐵𝐶) · 10) = 𝐴𝐵𝐶
8 dfdec10 12519 . 2 𝐴𝐵𝐶 = ((10 · 𝐴) + 𝐵𝐶)
9 10nn 12532 . . . . . . 7 10 ∈ ℕ
109nncni 12062 . . . . . 6 10 ∈ ℂ
111nn0cni 12324 . . . . . 6 𝐴 ∈ ℂ
1210, 11mulcli 11061 . . . . 5 (10 · 𝐴) ∈ ℂ
133recni 11068 . . . . 5 𝐵 ∈ ℂ
144recni 11068 . . . . . 6 𝐶 ∈ ℂ
159nnne0i 12092 . . . . . 6 10 ≠ 0
1614, 10, 15divcli 11796 . . . . 5 (𝐶 / 10) ∈ ℂ
1712, 13, 16addassi 11064 . . . 4 (((10 · 𝐴) + 𝐵) + (𝐶 / 10)) = ((10 · 𝐴) + (𝐵 + (𝐶 / 10)))
18 dfdec10 12519 . . . . 5 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1918oveq1i 7326 . . . 4 (𝐴𝐵 + (𝐶 / 10)) = (((10 · 𝐴) + 𝐵) + (𝐶 / 10))
20 df-dp2 31277 . . . . 5 𝐵𝐶 = (𝐵 + (𝐶 / 10))
2120oveq2i 7327 . . . 4 ((10 · 𝐴) + 𝐵𝐶) = ((10 · 𝐴) + (𝐵 + (𝐶 / 10)))
2217, 19, 213eqtr4ri 2775 . . 3 ((10 · 𝐴) + 𝐵𝐶) = (𝐴𝐵 + (𝐶 / 10))
231, 2deccl 12531 . . . 4 𝐴𝐵 ∈ ℕ0
2423, 4dpval2 31298 . . 3 (𝐴𝐵.𝐶) = (𝐴𝐵 + (𝐶 / 10))
2522, 24eqtr4i 2767 . 2 ((10 · 𝐴) + 𝐵𝐶) = (𝐴𝐵.𝐶)
267, 8, 253eqtri 2768 1 ((𝐴.𝐵𝐶) · 10) = (𝐴𝐵.𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  (class class class)co 7316  cr 10949  0cc0 10950  1c1 10951   + caddc 10953   · cmul 10955   / cdiv 11711  0cn0 12312  cdc 12516  cdp2 31276  .cdp 31293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-4 12117  df-5 12118  df-6 12119  df-7 12120  df-8 12121  df-9 12122  df-n0 12313  df-dec 12517  df-dp2 31277  df-dp 31294
This theorem is referenced by:  dpmul4  31319
  Copyright terms: Public domain W3C validator