Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dp3mul10 Structured version   Visualization version   GIF version

Theorem dp3mul10 30584
Description: Multiply by 10 a decimal expansion with 3 digits. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dp3mul10.a 𝐴 ∈ ℕ0
dp3mul10.b 𝐵 ∈ ℕ0
dp3mul10.c 𝐶 ∈ ℝ
Assertion
Ref Expression
dp3mul10 ((𝐴.𝐵𝐶) · 10) = (𝐴𝐵.𝐶)

Proof of Theorem dp3mul10
StepHypRef Expression
1 dp3mul10.a . . 3 𝐴 ∈ ℕ0
2 dp3mul10.b . . . . 5 𝐵 ∈ ℕ0
32nn0rei 11896 . . . 4 𝐵 ∈ ℝ
4 dp3mul10.c . . . 4 𝐶 ∈ ℝ
5 dp2cl 30566 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵𝐶 ∈ ℝ)
63, 4, 5mp2an 691 . . 3 𝐵𝐶 ∈ ℝ
71, 6dpmul10 30581 . 2 ((𝐴.𝐵𝐶) · 10) = 𝐴𝐵𝐶
8 dfdec10 12089 . 2 𝐴𝐵𝐶 = ((10 · 𝐴) + 𝐵𝐶)
9 10nn 12102 . . . . . . 7 10 ∈ ℕ
109nncni 11635 . . . . . 6 10 ∈ ℂ
111nn0cni 11897 . . . . . 6 𝐴 ∈ ℂ
1210, 11mulcli 10637 . . . . 5 (10 · 𝐴) ∈ ℂ
133recni 10644 . . . . 5 𝐵 ∈ ℂ
144recni 10644 . . . . . 6 𝐶 ∈ ℂ
159nnne0i 11665 . . . . . 6 10 ≠ 0
1614, 10, 15divcli 11371 . . . . 5 (𝐶 / 10) ∈ ℂ
1712, 13, 16addassi 10640 . . . 4 (((10 · 𝐴) + 𝐵) + (𝐶 / 10)) = ((10 · 𝐴) + (𝐵 + (𝐶 / 10)))
18 dfdec10 12089 . . . . 5 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
1918oveq1i 7150 . . . 4 (𝐴𝐵 + (𝐶 / 10)) = (((10 · 𝐴) + 𝐵) + (𝐶 / 10))
20 df-dp2 30558 . . . . 5 𝐵𝐶 = (𝐵 + (𝐶 / 10))
2120oveq2i 7151 . . . 4 ((10 · 𝐴) + 𝐵𝐶) = ((10 · 𝐴) + (𝐵 + (𝐶 / 10)))
2217, 19, 213eqtr4ri 2856 . . 3 ((10 · 𝐴) + 𝐵𝐶) = (𝐴𝐵 + (𝐶 / 10))
231, 2deccl 12101 . . . 4 𝐴𝐵 ∈ ℕ0
2423, 4dpval2 30579 . . 3 (𝐴𝐵.𝐶) = (𝐴𝐵 + (𝐶 / 10))
2522, 24eqtr4i 2848 . 2 ((10 · 𝐴) + 𝐵𝐶) = (𝐴𝐵.𝐶)
267, 8, 253eqtri 2849 1 ((𝐴.𝐵𝐶) · 10) = (𝐴𝐵.𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2114  (class class class)co 7140  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   / cdiv 11286  0cn0 11885  cdc 12086  cdp2 30557  .cdp 30574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-dec 12087  df-dp2 30558  df-dp 30575
This theorem is referenced by:  dpmul4  30600
  Copyright terms: Public domain W3C validator