| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p5lem | Structured version Visualization version GIF version | ||
| Description: Lemma for 6p5e11 12656 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 |
| 6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 |
| 6p5lem.4 | ⊢ 𝐵 = (𝐷 + 1) |
| 6p5lem.5 | ⊢ 𝐶 = (𝐸 + 1) |
| 6p5lem.6 | ⊢ (𝐴 + 𝐷) = ;1𝐸 |
| Ref | Expression |
|---|---|
| 6p5lem | ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 | . . 3 ⊢ 𝐵 = (𝐷 + 1) | |
| 2 | 1 | oveq2i 7352 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1)) |
| 3 | 6p5lem.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12388 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 5 | 6p5lem.2 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12388 | . . 3 ⊢ 𝐷 ∈ ℂ |
| 7 | ax-1cn 11059 | . . 3 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | addassi 11117 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1)) |
| 9 | 1nn0 12392 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 6p5lem.3 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 11 | 6p5lem.5 | . . . 4 ⊢ 𝐶 = (𝐸 + 1) | |
| 12 | 11 | eqcomi 2740 | . . 3 ⊢ (𝐸 + 1) = 𝐶 |
| 13 | 6p5lem.6 | . . 3 ⊢ (𝐴 + 𝐷) = ;1𝐸 | |
| 14 | 9, 10, 12, 13 | decsuc 12614 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = ;1𝐶 |
| 15 | 2, 8, 14 | 3eqtr2i 2760 | 1 ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7341 1c1 11002 + caddc 11004 ℕ0cn0 12376 ;cdc 12583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-dec 12584 |
| This theorem is referenced by: 6p5e11 12656 6p6e12 12657 7p4e11 12659 7p5e12 12660 7p6e13 12661 7p7e14 12662 8p3e11 12664 8p4e12 12665 8p5e13 12666 8p6e14 12667 8p7e15 12668 8p8e16 12669 9p2e11 12670 9p3e12 12671 9p4e13 12672 9p5e14 12673 9p6e15 12674 9p7e16 12675 9p8e17 12676 9p9e18 12677 |
| Copyright terms: Public domain | W3C validator |