| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p5lem | Structured version Visualization version GIF version | ||
| Description: Lemma for 6p5e11 12664 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 |
| 6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 |
| 6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 |
| 6p5lem.4 | ⊢ 𝐵 = (𝐷 + 1) |
| 6p5lem.5 | ⊢ 𝐶 = (𝐸 + 1) |
| 6p5lem.6 | ⊢ (𝐴 + 𝐷) = ;1𝐸 |
| Ref | Expression |
|---|---|
| 6p5lem | ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6p5lem.4 | . . 3 ⊢ 𝐵 = (𝐷 + 1) | |
| 2 | 1 | oveq2i 7360 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1)) |
| 3 | 6p5lem.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12396 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 5 | 6p5lem.2 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12396 | . . 3 ⊢ 𝐷 ∈ ℂ |
| 7 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 8 | 4, 6, 7 | addassi 11125 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1)) |
| 9 | 1nn0 12400 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 10 | 6p5lem.3 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
| 11 | 6p5lem.5 | . . . 4 ⊢ 𝐶 = (𝐸 + 1) | |
| 12 | 11 | eqcomi 2738 | . . 3 ⊢ (𝐸 + 1) = 𝐶 |
| 13 | 6p5lem.6 | . . 3 ⊢ (𝐴 + 𝐷) = ;1𝐸 | |
| 14 | 9, 10, 12, 13 | decsuc 12622 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = ;1𝐶 |
| 15 | 2, 8, 14 | 3eqtr2i 2758 | 1 ⊢ (𝐴 + 𝐵) = ;1𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7349 1c1 11010 + caddc 11012 ℕ0cn0 12384 ;cdc 12591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 |
| This theorem is referenced by: 6p5e11 12664 6p6e12 12665 7p4e11 12667 7p5e12 12668 7p6e13 12669 7p7e14 12670 8p3e11 12672 8p4e12 12673 8p5e13 12674 8p6e14 12675 8p7e15 12676 8p8e16 12677 9p2e11 12678 9p3e12 12679 9p4e13 12680 9p5e14 12681 9p6e15 12682 9p7e16 12683 9p8e17 12684 9p9e18 12685 |
| Copyright terms: Public domain | W3C validator |