MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p5lem Structured version   Visualization version   GIF version

Theorem 6p5lem 12146
Description: Lemma for 6p5e11 12149 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
6p5lem.1 𝐴 ∈ ℕ0
6p5lem.2 𝐷 ∈ ℕ0
6p5lem.3 𝐸 ∈ ℕ0
6p5lem.4 𝐵 = (𝐷 + 1)
6p5lem.5 𝐶 = (𝐸 + 1)
6p5lem.6 (𝐴 + 𝐷) = 1𝐸
Assertion
Ref Expression
6p5lem (𝐴 + 𝐵) = 1𝐶

Proof of Theorem 6p5lem
StepHypRef Expression
1 6p5lem.4 . . 3 𝐵 = (𝐷 + 1)
21oveq2i 7141 . 2 (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1))
3 6p5lem.1 . . . 4 𝐴 ∈ ℕ0
43nn0cni 11887 . . 3 𝐴 ∈ ℂ
5 6p5lem.2 . . . 4 𝐷 ∈ ℕ0
65nn0cni 11887 . . 3 𝐷 ∈ ℂ
7 ax-1cn 10572 . . 3 1 ∈ ℂ
84, 6, 7addassi 10628 . 2 ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1))
9 1nn0 11891 . . 3 1 ∈ ℕ0
10 6p5lem.3 . . 3 𝐸 ∈ ℕ0
11 6p5lem.5 . . . 4 𝐶 = (𝐸 + 1)
1211eqcomi 2830 . . 3 (𝐸 + 1) = 𝐶
13 6p5lem.6 . . 3 (𝐴 + 𝐷) = 1𝐸
149, 10, 12, 13decsuc 12107 . 2 ((𝐴 + 𝐷) + 1) = 1𝐶
152, 8, 143eqtr2i 2850 1 (𝐴 + 𝐵) = 1𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  (class class class)co 7130  1c1 10515   + caddc 10517  0cn0 11875  cdc 12076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-ltxr 10657  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-dec 12077
This theorem is referenced by:  6p5e11  12149  6p6e12  12150  7p4e11  12152  7p5e12  12153  7p6e13  12154  7p7e14  12155  8p3e11  12157  8p4e12  12158  8p5e13  12159  8p6e14  12160  8p7e15  12161  8p8e16  12162  9p2e11  12163  9p3e12  12164  9p4e13  12165  9p5e14  12166  9p6e15  12167  9p7e16  12168  9p8e17  12169  9p9e18  12170
  Copyright terms: Public domain W3C validator