Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6p5lem | Structured version Visualization version GIF version |
Description: Lemma for 6p5e11 12510 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
6p5lem.1 | ⊢ 𝐴 ∈ ℕ0 |
6p5lem.2 | ⊢ 𝐷 ∈ ℕ0 |
6p5lem.3 | ⊢ 𝐸 ∈ ℕ0 |
6p5lem.4 | ⊢ 𝐵 = (𝐷 + 1) |
6p5lem.5 | ⊢ 𝐶 = (𝐸 + 1) |
6p5lem.6 | ⊢ (𝐴 + 𝐷) = ;1𝐸 |
Ref | Expression |
---|---|
6p5lem | ⊢ (𝐴 + 𝐵) = ;1𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6p5lem.4 | . . 3 ⊢ 𝐵 = (𝐷 + 1) | |
2 | 1 | oveq2i 7286 | . 2 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐷 + 1)) |
3 | 6p5lem.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 12245 | . . 3 ⊢ 𝐴 ∈ ℂ |
5 | 6p5lem.2 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
6 | 5 | nn0cni 12245 | . . 3 ⊢ 𝐷 ∈ ℂ |
7 | ax-1cn 10929 | . . 3 ⊢ 1 ∈ ℂ | |
8 | 4, 6, 7 | addassi 10985 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = (𝐴 + (𝐷 + 1)) |
9 | 1nn0 12249 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 6p5lem.3 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
11 | 6p5lem.5 | . . . 4 ⊢ 𝐶 = (𝐸 + 1) | |
12 | 11 | eqcomi 2747 | . . 3 ⊢ (𝐸 + 1) = 𝐶 |
13 | 6p5lem.6 | . . 3 ⊢ (𝐴 + 𝐷) = ;1𝐸 | |
14 | 9, 10, 12, 13 | decsuc 12468 | . 2 ⊢ ((𝐴 + 𝐷) + 1) = ;1𝐶 |
15 | 2, 8, 14 | 3eqtr2i 2772 | 1 ⊢ (𝐴 + 𝐵) = ;1𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 1c1 10872 + caddc 10874 ℕ0cn0 12233 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-dec 12438 |
This theorem is referenced by: 6p5e11 12510 6p6e12 12511 7p4e11 12513 7p5e12 12514 7p6e13 12515 7p7e14 12516 8p3e11 12518 8p4e12 12519 8p5e13 12520 8p6e14 12521 8p7e15 12522 8p8e16 12523 9p2e11 12524 9p3e12 12525 9p4e13 12526 9p5e14 12527 9p6e15 12528 9p7e16 12529 9p8e17 12530 9p9e18 12531 |
Copyright terms: Public domain | W3C validator |