Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addassnni Structured version   Visualization version   GIF version

Theorem addassnni 41890
Description: Associative law for addition. (Contributed by metakunt, 25-Apr-2024.)
Hypotheses
Ref Expression
addassnni.1 𝐴 ∈ ℕ
addassnni.2 𝐵 ∈ ℕ
addassnni.3 𝐶 ∈ ℕ
Assertion
Ref Expression
addassnni ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))

Proof of Theorem addassnni
StepHypRef Expression
1 addassnni.1 . . 3 𝐴 ∈ ℕ
21nncni 12299 . 2 𝐴 ∈ ℂ
3 addassnni.2 . . 3 𝐵 ∈ ℕ
43nncni 12299 . 2 𝐵 ∈ ℂ
5 addassnni.3 . . 3 𝐶 ∈ ℕ
65nncni 12299 . 2 𝐶 ∈ ℂ
72, 4, 6addassi 11296 1 ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2103  (class class class)co 7445   + caddc 11183  cn 12289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-un 7766  ax-1cn 11238  ax-addcl 11240  ax-addass 11245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-ov 7448  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-nn 12290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator