MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numaddc Structured version   Visualization version   GIF version

Theorem numaddc 12414
Description: Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numaddc.8 𝐹 ∈ ℕ0
numaddc.9 ((𝐴 + 𝐶) + 1) = 𝐸
numaddc.10 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
Assertion
Ref Expression
numaddc (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numaddc
StepHypRef Expression
1 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
2 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
3 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
4 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
52, 3, 4numcl 12379 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2835 . . . . 5 𝑀 ∈ ℕ0
76nn0cni 12175 . . . 4 𝑀 ∈ ℂ
87mulid1i 10910 . . 3 (𝑀 · 1) = 𝑀
98oveq1i 7265 . 2 ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁)
10 numma.4 . . 3 𝐶 ∈ ℕ0
11 numma.5 . . 3 𝐷 ∈ ℕ0
12 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
13 1nn0 12179 . . 3 1 ∈ ℕ0
14 numaddc.8 . . 3 𝐹 ∈ ℕ0
153nn0cni 12175 . . . . . 6 𝐴 ∈ ℂ
1615mulid1i 10910 . . . . 5 (𝐴 · 1) = 𝐴
1716oveq1i 7265 . . . 4 ((𝐴 · 1) + (𝐶 + 1)) = (𝐴 + (𝐶 + 1))
1810nn0cni 12175 . . . . 5 𝐶 ∈ ℂ
19 ax-1cn 10860 . . . . 5 1 ∈ ℂ
2015, 18, 19addassi 10916 . . . 4 ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1))
21 numaddc.9 . . . 4 ((𝐴 + 𝐶) + 1) = 𝐸
2217, 20, 213eqtr2i 2772 . . 3 ((𝐴 · 1) + (𝐶 + 1)) = 𝐸
234nn0cni 12175 . . . . . 6 𝐵 ∈ ℂ
2423mulid1i 10910 . . . . 5 (𝐵 · 1) = 𝐵
2524oveq1i 7265 . . . 4 ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷)
26 numaddc.10 . . . 4 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
2725, 26eqtri 2766 . . 3 ((𝐵 · 1) + 𝐷) = ((𝑇 · 1) + 𝐹)
282, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27nummac 12411 . 2 ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
299, 28eqtr3i 2768 1 (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  (class class class)co 7255  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-nn 11904  df-n0 12164
This theorem is referenced by:  decaddc  12421
  Copyright terms: Public domain W3C validator