MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numaddc Structured version   Visualization version   GIF version

Theorem numaddc 12747
Description: Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numaddc.8 𝐹 ∈ ℕ0
numaddc.9 ((𝐴 + 𝐶) + 1) = 𝐸
numaddc.10 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
Assertion
Ref Expression
numaddc (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numaddc
StepHypRef Expression
1 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
2 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
3 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
4 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
52, 3, 4numcl 12712 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
61, 5eqeltri 2824 . . . . 5 𝑀 ∈ ℕ0
76nn0cni 12506 . . . 4 𝑀 ∈ ℂ
87mulridi 11240 . . 3 (𝑀 · 1) = 𝑀
98oveq1i 7424 . 2 ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁)
10 numma.4 . . 3 𝐶 ∈ ℕ0
11 numma.5 . . 3 𝐷 ∈ ℕ0
12 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
13 1nn0 12510 . . 3 1 ∈ ℕ0
14 numaddc.8 . . 3 𝐹 ∈ ℕ0
153nn0cni 12506 . . . . . 6 𝐴 ∈ ℂ
1615mulridi 11240 . . . . 5 (𝐴 · 1) = 𝐴
1716oveq1i 7424 . . . 4 ((𝐴 · 1) + (𝐶 + 1)) = (𝐴 + (𝐶 + 1))
1810nn0cni 12506 . . . . 5 𝐶 ∈ ℂ
19 ax-1cn 11188 . . . . 5 1 ∈ ℂ
2015, 18, 19addassi 11246 . . . 4 ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1))
21 numaddc.9 . . . 4 ((𝐴 + 𝐶) + 1) = 𝐸
2217, 20, 213eqtr2i 2761 . . 3 ((𝐴 · 1) + (𝐶 + 1)) = 𝐸
234nn0cni 12506 . . . . . 6 𝐵 ∈ ℂ
2423mulridi 11240 . . . . 5 (𝐵 · 1) = 𝐵
2524oveq1i 7424 . . . 4 ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷)
26 numaddc.10 . . . 4 (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹)
2725, 26eqtri 2755 . . 3 ((𝐵 · 1) + 𝐷) = ((𝑇 · 1) + 𝐹)
282, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27nummac 12744 . 2 ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
299, 28eqtr3i 2757 1 (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  (class class class)co 7414  1c1 11131   + caddc 11133   · cmul 11135  0cn0 12494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-ltxr 11275  df-sub 11468  df-nn 12235  df-n0 12495
This theorem is referenced by:  decaddc  12754
  Copyright terms: Public domain W3C validator