Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numaddc | Structured version Visualization version GIF version |
Description: Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
numaddc.8 | ⊢ 𝐹 ∈ ℕ0 |
numaddc.9 | ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 |
numaddc.10 | ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) |
Ref | Expression |
---|---|
numaddc | ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . . . 6 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
2 | numma.1 | . . . . . . 7 ⊢ 𝑇 ∈ ℕ0 | |
3 | numma.2 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
4 | numma.3 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 12306 | . . . . . 6 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2834 | . . . . 5 ⊢ 𝑀 ∈ ℕ0 |
7 | 6 | nn0cni 12102 | . . . 4 ⊢ 𝑀 ∈ ℂ |
8 | 7 | mulid1i 10837 | . . 3 ⊢ (𝑀 · 1) = 𝑀 |
9 | 8 | oveq1i 7223 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = (𝑀 + 𝑁) |
10 | numma.4 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
11 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
12 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
13 | 1nn0 12106 | . . 3 ⊢ 1 ∈ ℕ0 | |
14 | numaddc.8 | . . 3 ⊢ 𝐹 ∈ ℕ0 | |
15 | 3 | nn0cni 12102 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
16 | 15 | mulid1i 10837 | . . . . 5 ⊢ (𝐴 · 1) = 𝐴 |
17 | 16 | oveq1i 7223 | . . . 4 ⊢ ((𝐴 · 1) + (𝐶 + 1)) = (𝐴 + (𝐶 + 1)) |
18 | 10 | nn0cni 12102 | . . . . 5 ⊢ 𝐶 ∈ ℂ |
19 | ax-1cn 10787 | . . . . 5 ⊢ 1 ∈ ℂ | |
20 | 15, 18, 19 | addassi 10843 | . . . 4 ⊢ ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1)) |
21 | numaddc.9 | . . . 4 ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 | |
22 | 17, 20, 21 | 3eqtr2i 2771 | . . 3 ⊢ ((𝐴 · 1) + (𝐶 + 1)) = 𝐸 |
23 | 4 | nn0cni 12102 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
24 | 23 | mulid1i 10837 | . . . . 5 ⊢ (𝐵 · 1) = 𝐵 |
25 | 24 | oveq1i 7223 | . . . 4 ⊢ ((𝐵 · 1) + 𝐷) = (𝐵 + 𝐷) |
26 | numaddc.10 | . . . 4 ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) | |
27 | 25, 26 | eqtri 2765 | . . 3 ⊢ ((𝐵 · 1) + 𝐷) = ((𝑇 · 1) + 𝐹) |
28 | 2, 3, 4, 10, 11, 1, 12, 13, 14, 13, 22, 27 | nummac 12338 | . 2 ⊢ ((𝑀 · 1) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
29 | 9, 28 | eqtr3i 2767 | 1 ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2110 (class class class)co 7213 1c1 10730 + caddc 10732 · cmul 10734 ℕ0cn0 12090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-sub 11064 df-nn 11831 df-n0 12091 |
This theorem is referenced by: decaddc 12348 |
Copyright terms: Public domain | W3C validator |