MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltoddhalfle Structured version   Visualization version   GIF version

Theorem ltoddhalfle 16269
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))

Proof of Theorem ltoddhalfle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 16249 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 halfre 12331 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1 / 2) ∈ ℝ)
4 1red 11110 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 1 ∈ ℝ)
5 zre 12469 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
63, 4, 53jca 1128 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
76adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
8 halflt1 12335 . . . . . . . . . . . . 13 (1 / 2) < 1
9 axltadd 11183 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((1 / 2) < 1 → (𝑛 + (1 / 2)) < (𝑛 + 1)))
107, 8, 9mpisyl 21 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) < (𝑛 + 1))
11 zre 12469 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
135, 3readdcld 11138 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + (1 / 2)) ∈ ℝ)
1413adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) ∈ ℝ)
15 peano2z 12510 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℤ)
1615zred 12574 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℝ)
1716adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + 1) ∈ ℝ)
18 lttr 11186 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
1912, 14, 17, 18syl3anc 1373 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
2010, 19mpan2d 694 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 < (𝑛 + 1)))
21 zleltp1 12520 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2221ancoms 458 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2320, 22sylibrd 259 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀𝑛))
24 halfgt0 12333 . . . . . . . . . . . 12 0 < (1 / 2)
253, 5jca 511 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
2625adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
27 ltaddpos 11604 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2826, 27syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2924, 28mpbii 233 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 < (𝑛 + (1 / 2)))
305adantr 480 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℝ)
31 lelttr 11200 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3212, 30, 14, 31syl3anc 1373 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3329, 32mpan2d 694 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + (1 / 2))))
3423, 33impbid 212 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) ↔ 𝑀𝑛))
35 zcn 12470 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
36 1cnd 11104 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 1 ∈ ℂ)
37 2cnne0 12327 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
3837a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
39 muldivdir 11811 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4035, 36, 38, 39syl3anc 1373 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4140breq2d 5103 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
4241adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
43 2z 12501 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 2 ∈ ℤ)
45 id 22 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
4644, 45zmulcld 12580 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
4746zcnd 12575 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
4847adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
49 pncan1 11538 . . . . . . . . . . . . 13 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5150oveq1d 7361 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
52 2cnd 12200 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
53 2ne0 12226 . . . . . . . . . . . . . 14 2 ≠ 0
5453a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ≠ 0)
5535, 52, 54divcan3d 11899 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((2 · 𝑛) / 2) = 𝑛)
5655adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) / 2) = 𝑛)
5751, 56eqtrd 2766 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
5857breq2d 5103 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀𝑛))
5934, 42, 583bitr4d 311 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)))
60 oveq1 7353 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
6160breq2d 5103 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑁 / 2)))
62 oveq1 7353 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1))
6362oveq1d 7361 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) / 2))
6463breq2d 5103 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
6561, 64bibi12d 345 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → ((𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)) ↔ (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6659, 65syl5ibcom 245 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6766ex 412 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
6867adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
6968com23 86 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7069rexlimdva 3133 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
711, 70sylbid 240 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
72713imp 1110 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  2c2 12177  cz 12465  cdvds 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-dvds 16161
This theorem is referenced by:  gausslemma2dlem1a  27301
  Copyright terms: Public domain W3C validator