MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltoddhalfle Structured version   Visualization version   GIF version

Theorem ltoddhalfle 16331
Description: An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
Assertion
Ref Expression
ltoddhalfle ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))

Proof of Theorem ltoddhalfle
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 16311 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 halfre 12395 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ
32a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (1 / 2) ∈ ℝ)
4 1red 11175 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 1 ∈ ℝ)
5 zre 12533 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
63, 4, 53jca 1128 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
76adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ))
8 halflt1 12399 . . . . . . . . . . . . 13 (1 / 2) < 1
9 axltadd 11247 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((1 / 2) < 1 → (𝑛 + (1 / 2)) < (𝑛 + 1)))
107, 8, 9mpisyl 21 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) < (𝑛 + 1))
11 zre 12533 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
135, 3readdcld 11203 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + (1 / 2)) ∈ ℝ)
1413adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + (1 / 2)) ∈ ℝ)
15 peano2z 12574 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℤ)
1615zred 12638 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛 + 1) ∈ ℝ)
1716adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑛 + 1) ∈ ℝ)
18 lttr 11250 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
1912, 14, 17, 18syl3anc 1373 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 < (𝑛 + (1 / 2)) ∧ (𝑛 + (1 / 2)) < (𝑛 + 1)) → 𝑀 < (𝑛 + 1)))
2010, 19mpan2d 694 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀 < (𝑛 + 1)))
21 zleltp1 12584 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2221ancoms 458 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + 1)))
2320, 22sylibrd 259 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) → 𝑀𝑛))
24 halfgt0 12397 . . . . . . . . . . . 12 0 < (1 / 2)
253, 5jca 511 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
2625adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ))
27 ltaddpos 11668 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑛 ∈ ℝ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2826, 27syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < (1 / 2) ↔ 𝑛 < (𝑛 + (1 / 2))))
2924, 28mpbii 233 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 < (𝑛 + (1 / 2)))
305adantr 480 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℝ)
31 lelttr 11264 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝑛 + (1 / 2)) ∈ ℝ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3212, 30, 14, 31syl3anc 1373 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀𝑛𝑛 < (𝑛 + (1 / 2))) → 𝑀 < (𝑛 + (1 / 2))))
3329, 32mpan2d 694 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀𝑛𝑀 < (𝑛 + (1 / 2))))
3423, 33impbid 212 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (𝑛 + (1 / 2)) ↔ 𝑀𝑛))
35 zcn 12534 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
36 1cnd 11169 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 1 ∈ ℂ)
37 2cnne0 12391 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
3837a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
39 muldivdir 11875 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4035, 36, 38, 39syl3anc 1373 . . . . . . . . . . 11 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
4140breq2d 5119 . . . . . . . . . 10 (𝑛 ∈ ℤ → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
4241adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑛 + (1 / 2))))
43 2z 12565 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4443a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 2 ∈ ℤ)
45 id 22 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
4644, 45zmulcld 12644 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
4746zcnd 12639 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
4847adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
49 pncan1 11602 . . . . . . . . . . . . 13 ((2 · 𝑛) ∈ ℂ → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5048, 49syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
5150oveq1d 7402 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = ((2 · 𝑛) / 2))
52 2cnd 12264 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ∈ ℂ)
53 2ne0 12290 . . . . . . . . . . . . . 14 2 ≠ 0
5453a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → 2 ≠ 0)
5535, 52, 54divcan3d 11963 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((2 · 𝑛) / 2) = 𝑛)
5655adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) / 2) = 𝑛)
5751, 56eqtrd 2764 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) − 1) / 2) = 𝑛)
5857breq2d 5119 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀𝑛))
5934, 42, 583bitr4d 311 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)))
60 oveq1 7394 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
6160breq2d 5119 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 < (𝑁 / 2)))
62 oveq1 7394 . . . . . . . . . . 11 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) − 1) = (𝑁 − 1))
6362oveq1d 7402 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) − 1) / 2) = ((𝑁 − 1) / 2))
6463breq2d 5119 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
6561, 64bibi12d 345 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → ((𝑀 < (((2 · 𝑛) + 1) / 2) ↔ 𝑀 ≤ ((((2 · 𝑛) + 1) − 1) / 2)) ↔ (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6659, 65syl5ibcom 245 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2))))
6766ex 412 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
6867adantl 481 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
6968com23 86 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
7069rexlimdva 3134 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
711, 70sylbid 240 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))))
72713imp 1110 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-dvds 16223
This theorem is referenced by:  gausslemma2dlem1a  27276
  Copyright terms: Public domain W3C validator