Step | Hyp | Ref
| Expression |
1 | | breq2 5074 |
. 2
⊢ (𝑥 = 1 → (1 ≤ 𝑥 ↔ 1 ≤
1)) |
2 | | breq2 5074 |
. 2
⊢ (𝑥 = 𝑦 → (1 ≤ 𝑥 ↔ 1 ≤ 𝑦)) |
3 | | breq2 5074 |
. 2
⊢ (𝑥 = (𝑦 + 1) → (1 ≤ 𝑥 ↔ 1 ≤ (𝑦 + 1))) |
4 | | breq2 5074 |
. 2
⊢ (𝑥 = 𝐴 → (1 ≤ 𝑥 ↔ 1 ≤ 𝐴)) |
5 | | 1le1 11533 |
. 2
⊢ 1 ≤
1 |
6 | | nnre 11910 |
. . 3
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
7 | | recn 10892 |
. . . . . 6
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
8 | 7 | addid1d 11105 |
. . . . 5
⊢ (𝑦 ∈ ℝ → (𝑦 + 0) = 𝑦) |
9 | 8 | breq2d 5082 |
. . . 4
⊢ (𝑦 ∈ ℝ → (1 ≤
(𝑦 + 0) ↔ 1 ≤ 𝑦)) |
10 | | 0lt1 11427 |
. . . . . . . 8
⊢ 0 <
1 |
11 | | 0re 10908 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
12 | | 1re 10906 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
13 | | axltadd 10979 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 < 1 →
(𝑦 + 0) < (𝑦 + 1))) |
14 | 11, 12, 13 | mp3an12 1449 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (0 < 1
→ (𝑦 + 0) < (𝑦 + 1))) |
15 | 10, 14 | mpi 20 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → (𝑦 + 0) < (𝑦 + 1)) |
16 | | readdcl 10885 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑦 + 0)
∈ ℝ) |
17 | 11, 16 | mpan2 687 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (𝑦 + 0) ∈
ℝ) |
18 | | peano2re 11078 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (𝑦 + 1) ∈
ℝ) |
19 | | lttr 10982 |
. . . . . . . . 9
⊢ (((𝑦 + 0) ∈ ℝ ∧
(𝑦 + 1) ∈ ℝ
∧ 1 ∈ ℝ) → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
20 | 12, 19 | mp3an3 1448 |
. . . . . . . 8
⊢ (((𝑦 + 0) ∈ ℝ ∧
(𝑦 + 1) ∈ ℝ)
→ (((𝑦 + 0) <
(𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
21 | 17, 18, 20 | syl2anc 583 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → (((𝑦 + 0) < (𝑦 + 1) ∧ (𝑦 + 1) < 1) → (𝑦 + 0) < 1)) |
22 | 15, 21 | mpand 691 |
. . . . . 6
⊢ (𝑦 ∈ ℝ → ((𝑦 + 1) < 1 → (𝑦 + 0) < 1)) |
23 | 22 | con3d 152 |
. . . . 5
⊢ (𝑦 ∈ ℝ → (¬
(𝑦 + 0) < 1 → ¬
(𝑦 + 1) <
1)) |
24 | | lenlt 10984 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ (𝑦 +
0) ∈ ℝ) → (1 ≤ (𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) |
25 | 12, 17, 24 | sylancr 586 |
. . . . 5
⊢ (𝑦 ∈ ℝ → (1 ≤
(𝑦 + 0) ↔ ¬ (𝑦 + 0) < 1)) |
26 | | lenlt 10984 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ (𝑦 +
1) ∈ ℝ) → (1 ≤ (𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) |
27 | 12, 18, 26 | sylancr 586 |
. . . . 5
⊢ (𝑦 ∈ ℝ → (1 ≤
(𝑦 + 1) ↔ ¬ (𝑦 + 1) < 1)) |
28 | 23, 25, 27 | 3imtr4d 293 |
. . . 4
⊢ (𝑦 ∈ ℝ → (1 ≤
(𝑦 + 0) → 1 ≤
(𝑦 + 1))) |
29 | 9, 28 | sylbird 259 |
. . 3
⊢ (𝑦 ∈ ℝ → (1 ≤
𝑦 → 1 ≤ (𝑦 + 1))) |
30 | 6, 29 | syl 17 |
. 2
⊢ (𝑦 ∈ ℕ → (1 ≤
𝑦 → 1 ≤ (𝑦 + 1))) |
31 | 1, 2, 3, 4, 5, 30 | nnind 11921 |
1
⊢ (𝐴 ∈ ℕ → 1 ≤
𝐴) |