Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtpwpw2p Structured version   Visualization version   GIF version

Theorem sqrtpwpw2p 47463
Description: The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
sqrtpwpw2p ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))))

Proof of Theorem sqrtpwpw2p
StepHypRef Expression
1 nncn 12272 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
3 npcan1 11686 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
42, 3syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁)
54eqcomd 2741 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑁 = ((𝑁 − 1) + 1))
65oveq2d 7447 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑𝑁) = (2↑((𝑁 − 1) + 1)))
7 2cnd 12342 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ)
8 nnm1nn0 12565 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
98adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 − 1) ∈ ℕ0)
107, 9expp1d 14184 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
116, 10eqtrd 2775 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
1211oveq2d 7447 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) = (2↑((2↑(𝑁 − 1)) · 2)))
13 2nn0 12541 . . . . . . . . . 10 2 ∈ ℕ0
1413a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ0)
1513a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1615, 8nn0expcld 14282 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0)
1716adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑁 − 1)) ∈ ℕ0)
187, 14, 17expmuld 14186 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
1912, 18eqtrd 2775 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) = ((2↑(2↑(𝑁 − 1)))↑2))
20 nn0ge0 12549 . . . . . . . . 9 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
22 nnnn0 12531 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2315, 22nn0expcld 14282 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
2415, 23nn0expcld 14282 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ0)
2524nn0red 12586 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℝ)
26 nn0re 12533 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2725, 26anim12i 613 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ))
28 addge01 11771 . . . . . . . . 9 (((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀)))
2927, 28syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀)))
3021, 29mpbid 232 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀))
3119, 30eqbrtrrd 5172 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((2↑(2↑𝑁)) + 𝑀))
3224adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0)
33 simpr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
3432, 33nn0addcld 12589 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0)
35 nn0re 12533 . . . . . . . . 9 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → ((2↑(2↑𝑁)) + 𝑀) ∈ ℝ)
36 nn0ge0 12549 . . . . . . . . 9 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
3735, 36jca 511 . . . . . . . 8 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → (((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)))
3834, 37syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)))
39 resqrtth 15291 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) = ((2↑(2↑𝑁)) + 𝑀))
4038, 39syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) = ((2↑(2↑𝑁)) + 𝑀))
4131, 40breqtrrd 5176 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2))
4215, 16nn0expcld 14282 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
43 nn0re 12533 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → (2↑(2↑(𝑁 − 1))) ∈ ℝ)
44 nn0ge0 12549 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → 0 ≤ (2↑(2↑(𝑁 − 1))))
4543, 44jca 511 . . . . . . . 8 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
4642, 45syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
4746adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
48 resqrtcl 15289 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
4938, 48syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
50 sqrtge0 15293 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
5138, 50syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
52 le2sq 14171 . . . . . 6 ((((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))) ∧ ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ↔ ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2)))
5347, 49, 51, 52syl12anc 837 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ↔ ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2)))
5441, 53mpbird 257 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
55543adant3 1131 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
5626adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
57 peano2nn0 12564 . . . . . . . . . . . . 13 ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
5816, 57syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
5915, 58nn0expcld 14282 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
6059adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
61 peano2nn0 12564 . . . . . . . . . 10 ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0 → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℕ0)
6260, 61syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℕ0)
6362nn0red 12586 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℝ)
6432nn0red 12586 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℝ)
65 axltadd 11332 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℝ ∧ (2↑(2↑𝑁)) ∈ ℝ) → (𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1))))
6656, 63, 64, 65syl3anc 1370 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1))))
67663impia 1116 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
6824nn0cnd 12587 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℂ)
69683ad2ant1 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑(2↑𝑁)) ∈ ℂ)
7059nn0cnd 12587 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℂ)
71703ad2ant1 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℂ)
72 1cnd 11254 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → 1 ∈ ℂ)
7369, 71, 72addassd 11281 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1) = ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
7467, 73breqtrrd 5176 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
7542nn0cnd 12587 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
76 binom21 14255 . . . . . . . . . 10 ((2↑(2↑(𝑁 − 1))) ∈ ℂ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
7775, 76syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
78 2cnd 12342 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
7978, 15, 16expmuld 14186 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
8078, 8expp1d 14184 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
811, 3syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
8281oveq2d 7447 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑((𝑁 − 1) + 1)) = (2↑𝑁))
8380, 82eqtr3d 2777 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) · 2) = (2↑𝑁))
8483oveq2d 7447 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) · 2)) = (2↑(2↑𝑁)))
8579, 84eqtr3d 2777 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1)))↑2) = (2↑(2↑𝑁)))
8678, 75mulcomd 11280 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
8778, 16expp1d 14184 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) = ((2↑(2↑(𝑁 − 1))) · 2))
8886, 87eqtr4d 2778 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · (2↑(2↑(𝑁 − 1)))) = (2↑((2↑(𝑁 − 1)) + 1)))
8985, 88oveq12d 7449 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) = ((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))))
9089oveq1d 7446 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9177, 90eqtrd 2775 . . . . . . . 8 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9291adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9340, 92breq12d 5161 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2) ↔ ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1)))
94933adant3 1131 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2) ↔ ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1)))
9574, 94mpbird 257 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2))
9634nn0red 12586 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) + 𝑀) ∈ ℝ)
97 nn0ge0 12549 . . . . . . . . . . 11 ((2↑(2↑𝑁)) ∈ ℕ0 → 0 ≤ (2↑(2↑𝑁)))
9824, 97syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (2↑(2↑𝑁)))
9998, 20anim12i 613 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀))
10027, 99jca 511 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀)))
101 addge0 11750 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀)) → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
102100, 101syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
10396, 102resqrtcld 15453 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
104 peano2nn0 12564 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0)
10542, 104syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0)
106 nn0re 12533 . . . . . . . . 9 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ)
107 nn0ge0 12549 . . . . . . . . 9 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1))
108106, 107jca 511 . . . . . . . 8 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
109105, 108syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
110109adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
111 lt2sq 14170 . . . . . 6 ((((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀))) ∧ (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1))) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
112103, 51, 110, 111syl21anc 838 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
1131123adant3 1131 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
11495, 113mpbird 257 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))
11555, 114jca 511 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1)))
11642nn0zd 12637 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℤ)
117116adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑(𝑁 − 1))) ∈ ℤ)
11849, 117jca 511 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ))
1191183adant3 1131 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ))
120 flbi 13853 . . 3 (((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ) → ((⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))) ↔ ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))))
121119, 120syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))) ↔ ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))))
122115, 121mpbird 257 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  cn 12264  2c2 12319  0cn0 12524  cz 12611  cfl 13827  cexp 14099  csqrt 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271
This theorem is referenced by:  fmtnosqrt  47464
  Copyright terms: Public domain W3C validator