Proof of Theorem sinq12gt0
| Step | Hyp | Ref
| Expression |
| 1 | | 0xr 11287 |
. . 3
⊢ 0 ∈
ℝ* |
| 2 | | pire 26423 |
. . . 4
⊢ π
∈ ℝ |
| 3 | 2 | rexri 11298 |
. . 3
⊢ π
∈ ℝ* |
| 4 | | elioo2 13408 |
. . 3
⊢ ((0
∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π))) |
| 5 | 1, 3, 4 | mp2an 692 |
. 2
⊢ (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π)) |
| 6 | | rehalfcl 12473 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈
ℝ) |
| 7 | 6 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → (𝐴 / 2) ∈ ℝ) |
| 8 | | halfpos2 12475 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (0 <
𝐴 ↔ 0 < (𝐴 / 2))) |
| 9 | 8 | biimpa 476 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → 0 < (𝐴 / 2)) |
| 10 | 9 | 3adant3 1132 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → 0 < (𝐴 / 2)) |
| 11 | | 2re 12319 |
. . . . . . . . 9
⊢ 2 ∈
ℝ |
| 12 | | 2pos 12348 |
. . . . . . . . 9
⊢ 0 <
2 |
| 13 | 11, 12 | pm3.2i 470 |
. . . . . . . 8
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 14 | | ltdiv1 12111 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π /
2))) |
| 15 | 2, 13, 14 | mp3an23 1455 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π /
2))) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 < π ↔ (𝐴 / 2) < (π /
2))) |
| 17 | 16 | biimp3a 1471 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → (𝐴 / 2) < (π / 2)) |
| 18 | | sincosq1lem 26463 |
. . . . 5
⊢ (((𝐴 / 2) ∈ ℝ ∧ 0
< (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)) → 0
< (sin‘(𝐴 /
2))) |
| 19 | 7, 10, 17, 18 | syl3anc 1373 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → 0 < (sin‘(𝐴 / 2))) |
| 20 | | resubcl 11552 |
. . . . . . . . 9
⊢ ((π
∈ ℝ ∧ 𝐴
∈ ℝ) → (π − 𝐴) ∈ ℝ) |
| 21 | 2, 20 | mpan 690 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (π
− 𝐴) ∈
ℝ) |
| 22 | | rehalfcl 12473 |
. . . . . . . 8
⊢ ((π
− 𝐴) ∈ ℝ
→ ((π − 𝐴) /
2) ∈ ℝ) |
| 23 | 21, 22 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → ((π
− 𝐴) / 2) ∈
ℝ) |
| 24 | 23 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → ((π − 𝐴) / 2) ∈
ℝ) |
| 25 | | posdif 11735 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ) → (𝐴
< π ↔ 0 < (π − 𝐴))) |
| 26 | 2, 25 | mpan2 691 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < (π
− 𝐴))) |
| 27 | | halfpos2 12475 |
. . . . . . . . . 10
⊢ ((π
− 𝐴) ∈ ℝ
→ (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2))) |
| 28 | 21, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (0 <
(π − 𝐴) ↔ 0
< ((π − 𝐴) /
2))) |
| 29 | 26, 28 | bitrd 279 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < ((π
− 𝐴) /
2))) |
| 30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → (𝐴 < π ↔ 0 < ((π
− 𝐴) /
2))) |
| 31 | 30 | biimp3a 1471 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → 0 < ((π −
𝐴) / 2)) |
| 32 | | ltsubpos 11734 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ π
∈ ℝ) → (0 < 𝐴 ↔ (π − 𝐴) < π)) |
| 33 | 2, 32 | mpan2 691 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (0 <
𝐴 ↔ (π −
𝐴) <
π)) |
| 34 | | ltdiv1 12111 |
. . . . . . . . . . 11
⊢ (((π
− 𝐴) ∈ ℝ
∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) →
((π − 𝐴) < π
↔ ((π − 𝐴) /
2) < (π / 2))) |
| 35 | 2, 13, 34 | mp3an23 1455 |
. . . . . . . . . 10
⊢ ((π
− 𝐴) ∈ ℝ
→ ((π − 𝐴)
< π ↔ ((π − 𝐴) / 2) < (π / 2))) |
| 36 | 21, 35 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → ((π
− 𝐴) < π ↔
((π − 𝐴) / 2) <
(π / 2))) |
| 37 | 33, 36 | bitrd 279 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (0 <
𝐴 ↔ ((π −
𝐴) / 2) < (π /
2))) |
| 38 | 37 | biimpa 476 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴) → ((π −
𝐴) / 2) < (π /
2)) |
| 39 | 38 | 3adant3 1132 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → ((π − 𝐴) / 2) < (π /
2)) |
| 40 | | sincosq1lem 26463 |
. . . . . 6
⊢ ((((π
− 𝐴) / 2) ∈
ℝ ∧ 0 < ((π − 𝐴) / 2) ∧ ((π − 𝐴) / 2) < (π / 2)) → 0
< (sin‘((π − 𝐴) / 2))) |
| 41 | 24, 31, 39, 40 | syl3anc 1373 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → 0 < (sin‘((π
− 𝐴) /
2))) |
| 42 | | recn 11224 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 43 | | picn 26424 |
. . . . . . . . . 10
⊢ π
∈ ℂ |
| 44 | | 2cnne0 12455 |
. . . . . . . . . 10
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 45 | | divsubdir 11940 |
. . . . . . . . . 10
⊢ ((π
∈ ℂ ∧ 𝐴
∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π −
𝐴) / 2) = ((π / 2)
− (𝐴 /
2))) |
| 46 | 43, 44, 45 | mp3an13 1454 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((π
− 𝐴) / 2) = ((π /
2) − (𝐴 /
2))) |
| 47 | 42, 46 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → ((π
− 𝐴) / 2) = ((π /
2) − (𝐴 /
2))) |
| 48 | 47 | fveq2d 6885 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(sin‘((π − 𝐴) / 2)) = (sin‘((π / 2) −
(𝐴 / 2)))) |
| 49 | 6 | recnd 11268 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (𝐴 / 2) ∈
ℂ) |
| 50 | | sinhalfpim 26459 |
. . . . . . . 8
⊢ ((𝐴 / 2) ∈ ℂ →
(sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2))) |
| 51 | 49, 50 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2))) |
| 52 | 48, 51 | eqtrd 2771 |
. . . . . 6
⊢ (𝐴 ∈ ℝ →
(sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2))) |
| 53 | 52 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → (sin‘((π −
𝐴) / 2)) =
(cos‘(𝐴 /
2))) |
| 54 | 41, 53 | breqtrd 5150 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → 0 < (cos‘(𝐴 / 2))) |
| 55 | | resincl 16163 |
. . . . . . . 8
⊢ ((𝐴 / 2) ∈ ℝ →
(sin‘(𝐴 / 2)) ∈
ℝ) |
| 56 | | recoscl 16164 |
. . . . . . . 8
⊢ ((𝐴 / 2) ∈ ℝ →
(cos‘(𝐴 / 2)) ∈
ℝ) |
| 57 | 55, 56 | jca 511 |
. . . . . . 7
⊢ ((𝐴 / 2) ∈ ℝ →
((sin‘(𝐴 / 2)) ∈
ℝ ∧ (cos‘(𝐴
/ 2)) ∈ ℝ)) |
| 58 | | axmulgt0 11314 |
. . . . . . 7
⊢
(((sin‘(𝐴 /
2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
| 59 | 6, 57, 58 | 3syl 18 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
| 60 | | remulcl 11219 |
. . . . . . . . 9
⊢
(((sin‘(𝐴 /
2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) →
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))) ∈ ℝ) |
| 61 | 6, 57, 60 | 3syl 18 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ →
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))) ∈ ℝ) |
| 62 | | axmulgt0 11314 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) →
((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2)))))) |
| 63 | 11, 61, 62 | sylancr 587 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → ((0 <
2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2
· ((sin‘(𝐴 /
2)) · (cos‘(𝐴
/ 2)))))) |
| 64 | 12, 63 | mpani 696 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (0 <
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))) |
| 65 | 59, 64 | syld 47 |
. . . . 5
⊢ (𝐴 ∈ ℝ → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))) |
| 66 | 65 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → ((0 <
(sin‘(𝐴 / 2)) ∧ 0
< (cos‘(𝐴 / 2)))
→ 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))) |
| 67 | 19, 54, 66 | mp2and 699 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → 0 < (2 ·
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))))) |
| 68 | | 2cn 12320 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
| 69 | | 2ne0 12349 |
. . . . . . . 8
⊢ 2 ≠
0 |
| 70 | | divcan2 11909 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴) |
| 71 | 68, 69, 70 | mp3an23 1455 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (2
· (𝐴 / 2)) = 𝐴) |
| 72 | 42, 71 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (2
· (𝐴 / 2)) = 𝐴) |
| 73 | 72 | fveq2d 6885 |
. . . . 5
⊢ (𝐴 ∈ ℝ →
(sin‘(2 · (𝐴 /
2))) = (sin‘𝐴)) |
| 74 | | sin2t 16200 |
. . . . . 6
⊢ ((𝐴 / 2) ∈ ℂ →
(sin‘(2 · (𝐴 /
2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
| 75 | 49, 74 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ ℝ →
(sin‘(2 · (𝐴 /
2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))) |
| 76 | 73, 75 | eqtr3d 2773 |
. . . 4
⊢ (𝐴 ∈ ℝ →
(sin‘𝐴) = (2 ·
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))))) |
| 77 | 76 | 3ad2ant1 1133 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → (sin‘𝐴) = (2 ·
((sin‘(𝐴 / 2))
· (cos‘(𝐴 /
2))))) |
| 78 | 67, 77 | breqtrrd 5152 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 0 <
𝐴 ∧ 𝐴 < π) → 0 < (sin‘𝐴)) |
| 79 | 5, 78 | sylbi 217 |
1
⊢ (𝐴 ∈ (0(,)π) → 0 <
(sin‘𝐴)) |