MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinq12gt0 Structured version   Visualization version   GIF version

Theorem sinq12gt0 26473
Description: The sine of a number strictly between 0 and π is positive. (Contributed by Paul Chapman, 15-Mar-2008.)
Assertion
Ref Expression
sinq12gt0 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))

Proof of Theorem sinq12gt0
StepHypRef Expression
1 0xr 11287 . . 3 0 ∈ ℝ*
2 pire 26423 . . . 4 π ∈ ℝ
32rexri 11298 . . 3 π ∈ ℝ*
4 elioo2 13408 . . 3 ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π)))
51, 3, 4mp2an 692 . 2 (𝐴 ∈ (0(,)π) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π))
6 rehalfcl 12473 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
763ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) ∈ ℝ)
8 halfpos2 12475 . . . . . . 7 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 < (𝐴 / 2)))
98biimpa 476 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
1093adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (𝐴 / 2))
11 2re 12319 . . . . . . . . 9 2 ∈ ℝ
12 2pos 12348 . . . . . . . . 9 0 < 2
1311, 12pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
14 ltdiv1 12111 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
152, 13, 14mp3an23 1455 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1615adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ (𝐴 / 2) < (π / 2)))
1716biimp3a 1471 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (𝐴 / 2) < (π / 2))
18 sincosq1lem 26463 . . . . 5 (((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) < (π / 2)) → 0 < (sin‘(𝐴 / 2)))
197, 10, 17, 18syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘(𝐴 / 2)))
20 resubcl 11552 . . . . . . . . 9 ((π ∈ ℝ ∧ 𝐴 ∈ ℝ) → (π − 𝐴) ∈ ℝ)
212, 20mpan 690 . . . . . . . 8 (𝐴 ∈ ℝ → (π − 𝐴) ∈ ℝ)
22 rehalfcl 12473 . . . . . . . 8 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
2321, 22syl 17 . . . . . . 7 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) ∈ ℝ)
24233ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) ∈ ℝ)
25 posdif 11735 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (𝐴 < π ↔ 0 < (π − 𝐴)))
262, 25mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < (π − 𝐴)))
27 halfpos2 12475 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2821, 27syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < (π − 𝐴) ↔ 0 < ((π − 𝐴) / 2)))
2926, 28bitrd 279 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3029adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < π ↔ 0 < ((π − 𝐴) / 2)))
3130biimp3a 1471 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < ((π − 𝐴) / 2))
32 ltsubpos 11734 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ π ∈ ℝ) → (0 < 𝐴 ↔ (π − 𝐴) < π))
332, 32mpan2 691 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (π − 𝐴) < π))
34 ltdiv1 12111 . . . . . . . . . . 11 (((π − 𝐴) ∈ ℝ ∧ π ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
352, 13, 34mp3an23 1455 . . . . . . . . . 10 ((π − 𝐴) ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3621, 35syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π − 𝐴) < π ↔ ((π − 𝐴) / 2) < (π / 2)))
3733, 36bitrd 279 . . . . . . . 8 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ((π − 𝐴) / 2) < (π / 2)))
3837biimpa 476 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((π − 𝐴) / 2) < (π / 2))
39383adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((π − 𝐴) / 2) < (π / 2))
40 sincosq1lem 26463 . . . . . 6 ((((π − 𝐴) / 2) ∈ ℝ ∧ 0 < ((π − 𝐴) / 2) ∧ ((π − 𝐴) / 2) < (π / 2)) → 0 < (sin‘((π − 𝐴) / 2)))
4124, 31, 39, 40syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘((π − 𝐴) / 2)))
42 recn 11224 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43 picn 26424 . . . . . . . . . 10 π ∈ ℂ
44 2cnne0 12455 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
45 divsubdir 11940 . . . . . . . . . 10 ((π ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4643, 44, 45mp3an13 1454 . . . . . . . . 9 (𝐴 ∈ ℂ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4742, 46syl 17 . . . . . . . 8 (𝐴 ∈ ℝ → ((π − 𝐴) / 2) = ((π / 2) − (𝐴 / 2)))
4847fveq2d 6885 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (sin‘((π / 2) − (𝐴 / 2))))
496recnd 11268 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℂ)
50 sinhalfpim 26459 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5149, 50syl 17 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) − (𝐴 / 2))) = (cos‘(𝐴 / 2)))
5248, 51eqtrd 2771 . . . . . 6 (𝐴 ∈ ℝ → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
53523ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘((π − 𝐴) / 2)) = (cos‘(𝐴 / 2)))
5441, 53breqtrd 5150 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (cos‘(𝐴 / 2)))
55 resincl 16163 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
56 recoscl 16164 . . . . . . . 8 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
5755, 56jca 511 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ))
58 axmulgt0 11314 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
596, 57, 583syl 18 . . . . . 6 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
60 remulcl 11219 . . . . . . . . 9 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
616, 57, 603syl 18 . . . . . . . 8 (𝐴 ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
62 axmulgt0 11314 . . . . . . . 8 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6311, 61, 62sylancr 587 . . . . . . 7 (𝐴 ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6412, 63mpani 696 . . . . . 6 (𝐴 ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6559, 64syld 47 . . . . 5 (𝐴 ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
66653ad2ant1 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
6719, 54, 66mp2and 699 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
68 2cn 12320 . . . . . . . 8 2 ∈ ℂ
69 2ne0 12349 . . . . . . . 8 2 ≠ 0
70 divcan2 11909 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
7168, 69, 70mp3an23 1455 . . . . . . 7 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
7242, 71syl 17 . . . . . 6 (𝐴 ∈ ℝ → (2 · (𝐴 / 2)) = 𝐴)
7372fveq2d 6885 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
74 sin2t 16200 . . . . . 6 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7549, 74syl 17 . . . . 5 (𝐴 ∈ ℝ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7673, 75eqtr3d 2773 . . . 4 (𝐴 ∈ ℝ → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
77763ad2ant1 1133 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → (sin‘𝐴) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
7867, 77breqtrrd 5152 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 < π) → 0 < (sin‘𝐴))
795, 78sylbi 217 1 (𝐴 ∈ (0(,)π) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134   · cmul 11139  *cxr 11273   < clt 11274  cmin 11471   / cdiv 11899  2c2 12300  (,)cioo 13367  sincsin 16084  cosccos 16085  πcpi 16087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825
This theorem is referenced by:  sinq12ge0  26474  sinq34lt0t  26475  cosq14gt0  26476  sineq0  26490  cosordlem  26496  tan2h  37641  sineq0ALT  44928  wallispilem1  46061
  Copyright terms: Public domain W3C validator