MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin02gt0 Structured version   Visualization version   GIF version

Theorem sin02gt0 16210
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 11282 . . . . . . 7 0 ∈ ℝ*
2 2re 12314 . . . . . . 7 2 ∈ ℝ
3 elioc2 13426 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2)))
41, 2, 3mp2an 692 . . . . . 6 (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2))
5 rehalfcl 12468 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
653ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ∈ ℝ)
74, 6sylbi 217 . . . . 5 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℝ)
8 resincl 16158 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
9 recoscl 16159 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
108, 9remulcld 11265 . . . . 5 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
117, 10syl 17 . . . 4 (𝐴 ∈ (0(,]2) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
12 2pos 12343 . . . . . . . . . 10 0 < 2
13 divgt0 12110 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝐴 / 2))
142, 12, 13mpanr12 705 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
15143adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → 0 < (𝐴 / 2))
162, 12pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
17 lediv1 12107 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
182, 16, 17mp3an23 1455 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
1918biimpa 476 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ (2 / 2))
20 2div2e1 12381 . . . . . . . . . 10 (2 / 2) = 1
2119, 20breqtrdi 5160 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
22213adant2 1131 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
236, 15, 223jca 1128 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
24 1re 11235 . . . . . . . 8 1 ∈ ℝ
25 elioc2 13426 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
261, 24, 25mp2an 692 . . . . . . 7 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
2723, 4, 263imtr4i 292 . . . . . 6 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ (0(,]1))
28 sin01gt0 16208 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (sin‘(𝐴 / 2)))
2927, 28syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (sin‘(𝐴 / 2)))
30 cos01gt0 16209 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
3127, 30syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (cos‘(𝐴 / 2)))
32 axmulgt0 11309 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
338, 9, 32syl2anc 584 . . . . . 6 ((𝐴 / 2) ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
347, 33syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
3529, 31, 34mp2and 699 . . . 4 (𝐴 ∈ (0(,]2) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))
36 axmulgt0 11309 . . . . . 6 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
372, 36mpan 690 . . . . 5 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3812, 37mpani 696 . . . 4 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3911, 35, 38sylc 65 . . 3 (𝐴 ∈ (0(,]2) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
407recnd 11263 . . . 4 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℂ)
41 sin2t 16195 . . . 4 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4240, 41syl 17 . . 3 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4339, 42breqtrrd 5147 . 2 (𝐴 ∈ (0(,]2) → 0 < (sin‘(2 · (𝐴 / 2))))
444simp1bi 1145 . . . . 5 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℝ)
4544recnd 11263 . . . 4 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℂ)
46 2cn 12315 . . . . 5 2 ∈ ℂ
47 2ne0 12344 . . . . 5 2 ≠ 0
48 divcan2 11904 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
4946, 47, 48mp3an23 1455 . . . 4 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
5045, 49syl 17 . . 3 (𝐴 ∈ (0(,]2) → (2 · (𝐴 / 2)) = 𝐴)
5150fveq2d 6880 . 2 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
5243, 51breqtrd 5145 1 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134  *cxr 11268   < clt 11269  cle 11270   / cdiv 11894  2c2 12295  (,]cioc 13363  sincsin 16079  cosccos 16080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ioc 13367  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086
This theorem is referenced by:  sincos2sgn  16212  pilem2  26414  sinhalfpilem  26424  sincosq1lem  26458
  Copyright terms: Public domain W3C validator