MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin02gt0 Structured version   Visualization version   GIF version

Theorem sin02gt0 15378
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 10534 . . . . . . 7 0 ∈ ℝ*
2 2re 11559 . . . . . . 7 2 ∈ ℝ
3 elioc2 12649 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2)))
41, 2, 3mp2an 688 . . . . . 6 (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2))
5 rehalfcl 11711 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
653ad2ant1 1126 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ∈ ℝ)
74, 6sylbi 218 . . . . 5 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℝ)
8 resincl 15326 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
9 recoscl 15327 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
108, 9remulcld 10517 . . . . 5 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
117, 10syl 17 . . . 4 (𝐴 ∈ (0(,]2) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
12 2pos 11588 . . . . . . . . . 10 0 < 2
13 divgt0 11356 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝐴 / 2))
142, 12, 13mpanr12 701 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
15143adant3 1125 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → 0 < (𝐴 / 2))
162, 12pm3.2i 471 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
17 lediv1 11353 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
182, 16, 17mp3an23 1445 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
1918biimpa 477 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ (2 / 2))
20 2div2e1 11626 . . . . . . . . . 10 (2 / 2) = 1
2119, 20syl6breq 5003 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
22213adant2 1124 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
236, 15, 223jca 1121 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
24 1re 10487 . . . . . . . 8 1 ∈ ℝ
25 elioc2 12649 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
261, 24, 25mp2an 688 . . . . . . 7 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
2723, 4, 263imtr4i 293 . . . . . 6 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ (0(,]1))
28 sin01gt0 15376 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (sin‘(𝐴 / 2)))
2927, 28syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (sin‘(𝐴 / 2)))
30 cos01gt0 15377 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
3127, 30syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (cos‘(𝐴 / 2)))
32 axmulgt0 10562 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
338, 9, 32syl2anc 584 . . . . . 6 ((𝐴 / 2) ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
347, 33syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
3529, 31, 34mp2and 695 . . . 4 (𝐴 ∈ (0(,]2) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))
36 axmulgt0 10562 . . . . . 6 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
372, 36mpan 686 . . . . 5 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3812, 37mpani 692 . . . 4 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3911, 35, 38sylc 65 . . 3 (𝐴 ∈ (0(,]2) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
407recnd 10515 . . . 4 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℂ)
41 sin2t 15363 . . . 4 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4240, 41syl 17 . . 3 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4339, 42breqtrrd 4990 . 2 (𝐴 ∈ (0(,]2) → 0 < (sin‘(2 · (𝐴 / 2))))
444simp1bi 1138 . . . . 5 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℝ)
4544recnd 10515 . . . 4 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℂ)
46 2cn 11560 . . . . 5 2 ∈ ℂ
47 2ne0 11589 . . . . 5 2 ≠ 0
48 divcan2 11154 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
4946, 47, 48mp3an23 1445 . . . 4 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
5045, 49syl 17 . . 3 (𝐴 ∈ (0(,]2) → (2 · (𝐴 / 2)) = 𝐴)
5150fveq2d 6542 . 2 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
5243, 51breqtrd 4988 1 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   · cmul 10388  *cxr 10520   < clt 10521  cle 10522   / cdiv 11145  2c2 11540  (,]cioc 12589  sincsin 15250  cosccos 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-ioc 12593  df-ico 12594  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257
This theorem is referenced by:  sincos2sgn  15380  pilem2  24723  sinhalfpilem  24732  sincosq1lem  24766
  Copyright terms: Public domain W3C validator