MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sin02gt0 Structured version   Visualization version   GIF version

Theorem sin02gt0 16180
Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
sin02gt0 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))

Proof of Theorem sin02gt0
StepHypRef Expression
1 0xr 11298 . . . . . . 7 0 ∈ ℝ*
2 2re 12324 . . . . . . 7 2 ∈ ℝ
3 elioc2 13427 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2)))
41, 2, 3mp2an 690 . . . . . 6 (𝐴 ∈ (0(,]2) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2))
5 rehalfcl 12476 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
653ad2ant1 1130 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ∈ ℝ)
74, 6sylbi 216 . . . . 5 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℝ)
8 resincl 16128 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (sin‘(𝐴 / 2)) ∈ ℝ)
9 recoscl 16129 . . . . . 6 ((𝐴 / 2) ∈ ℝ → (cos‘(𝐴 / 2)) ∈ ℝ)
108, 9remulcld 11281 . . . . 5 ((𝐴 / 2) ∈ ℝ → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
117, 10syl 17 . . . 4 (𝐴 ∈ (0(,]2) → ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ)
12 2pos 12353 . . . . . . . . . 10 0 < 2
13 divgt0 12120 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 < (𝐴 / 2))
142, 12, 13mpanr12 703 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 / 2))
15143adant3 1129 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → 0 < (𝐴 / 2))
162, 12pm3.2i 469 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
17 lediv1 12117 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
182, 16, 17mp3an23 1449 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 ≤ 2 ↔ (𝐴 / 2) ≤ (2 / 2)))
1918biimpa 475 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ (2 / 2))
20 2div2e1 12391 . . . . . . . . . 10 (2 / 2) = 1
2119, 20breqtrdi 5190 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
22213adant2 1128 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → (𝐴 / 2) ≤ 1)
236, 15, 223jca 1125 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 2) → ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
24 1re 11251 . . . . . . . 8 1 ∈ ℝ
25 elioc2 13427 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
261, 24, 25mp2an 690 . . . . . . 7 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
2723, 4, 263imtr4i 291 . . . . . 6 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ (0(,]1))
28 sin01gt0 16178 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (sin‘(𝐴 / 2)))
2927, 28syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (sin‘(𝐴 / 2)))
30 cos01gt0 16179 . . . . . 6 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
3127, 30syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → 0 < (cos‘(𝐴 / 2)))
32 axmulgt0 11325 . . . . . . 7 (((sin‘(𝐴 / 2)) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
338, 9, 32syl2anc 582 . . . . . 6 ((𝐴 / 2) ∈ ℝ → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
347, 33syl 17 . . . . 5 (𝐴 ∈ (0(,]2) → ((0 < (sin‘(𝐴 / 2)) ∧ 0 < (cos‘(𝐴 / 2))) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
3529, 31, 34mp2and 697 . . . 4 (𝐴 ∈ (0(,]2) → 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))
36 axmulgt0 11325 . . . . . 6 ((2 ∈ ℝ ∧ ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ) → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
372, 36mpan 688 . . . . 5 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → ((0 < 2 ∧ 0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3812, 37mpani 694 . . . 4 (((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) ∈ ℝ → (0 < ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2))))))
3911, 35, 38sylc 65 . . 3 (𝐴 ∈ (0(,]2) → 0 < (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
407recnd 11279 . . . 4 (𝐴 ∈ (0(,]2) → (𝐴 / 2) ∈ ℂ)
41 sin2t 16165 . . . 4 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4240, 41syl 17 . . 3 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
4339, 42breqtrrd 5177 . 2 (𝐴 ∈ (0(,]2) → 0 < (sin‘(2 · (𝐴 / 2))))
444simp1bi 1142 . . . . 5 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℝ)
4544recnd 11279 . . . 4 (𝐴 ∈ (0(,]2) → 𝐴 ∈ ℂ)
46 2cn 12325 . . . . 5 2 ∈ ℂ
47 2ne0 12354 . . . . 5 2 ≠ 0
48 divcan2 11918 . . . . 5 ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (2 · (𝐴 / 2)) = 𝐴)
4946, 47, 48mp3an23 1449 . . . 4 (𝐴 ∈ ℂ → (2 · (𝐴 / 2)) = 𝐴)
5045, 49syl 17 . . 3 (𝐴 ∈ (0(,]2) → (2 · (𝐴 / 2)) = 𝐴)
5150fveq2d 6900 . 2 (𝐴 ∈ (0(,]2) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
5243, 51breqtrd 5175 1 (𝐴 ∈ (0(,]2) → 0 < (sin‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  cc 11143  cr 11144  0cc0 11145  1c1 11146   · cmul 11150  *cxr 11284   < clt 11285  cle 11286   / cdiv 11908  2c2 12305  (,]cioc 13365  sincsin 16051  cosccos 16052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9472  df-inf 9473  df-oi 9540  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-ioc 13369  df-ico 13370  df-fz 13525  df-fzo 13668  df-fl 13798  df-seq 14008  df-exp 14068  df-fac 14277  df-bc 14306  df-hash 14334  df-shft 15058  df-cj 15090  df-re 15091  df-im 15092  df-sqrt 15226  df-abs 15227  df-limsup 15459  df-clim 15476  df-rlim 15477  df-sum 15677  df-ef 16055  df-sin 16057  df-cos 16058
This theorem is referenced by:  sincos2sgn  16182  pilem2  26451  sinhalfpilem  26460  sincosq1lem  26494
  Copyright terms: Public domain W3C validator