Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval Structured version   Visualization version   GIF version

Theorem ballotlemfval 30934
Description: The value of F. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotlemfval.c (𝜑𝐶𝑂)
ballotlemfval.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
ballotlemfval (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotlemfval.c . . 3 (𝜑𝐶𝑂)
2 simpl 474 . . . . . . . 8 ((𝑏 = 𝐶𝑖 ∈ ℤ) → 𝑏 = 𝐶)
32ineq2d 3976 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝐶))
43fveq2d 6379 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝐶)))
52difeq2d 3890 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝐶))
65fveq2d 6379 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝐶)))
74, 6oveq12d 6860 . . . . 5 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))))
87mpteq2dva 4903 . . . 4 (𝑏 = 𝐶 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
9 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
10 ineq2 3970 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝑐))
1110fveq2d 6379 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝑐)))
12 difeq2 3884 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝑐))
1312fveq2d 6379 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝑐)))
1411, 13oveq12d 6860 . . . . . . 7 (𝑏 = 𝑐 → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))
1514mpteq2dv 4904 . . . . . 6 (𝑏 = 𝑐 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
1615cbvmptv 4909 . . . . 5 (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))))) = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
179, 16eqtr4i 2790 . . . 4 𝐹 = (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))))
18 zex 11633 . . . . 5 ℤ ∈ V
1918mptex 6679 . . . 4 (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))) ∈ V
208, 17, 19fvmpt 6471 . . 3 (𝐶𝑂 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
211, 20syl 17 . 2 (𝜑 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
22 oveq2 6850 . . . . . 6 (𝑖 = 𝐽 → (1...𝑖) = (1...𝐽))
2322ineq1d 3975 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∩ 𝐶) = ((1...𝐽) ∩ 𝐶))
2423fveq2d 6379 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∩ 𝐶)) = (♯‘((1...𝐽) ∩ 𝐶)))
2522difeq1d 3889 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∖ 𝐶) = ((1...𝐽) ∖ 𝐶))
2625fveq2d 6379 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∖ 𝐶)) = (♯‘((1...𝐽) ∖ 𝐶)))
2724, 26oveq12d 6860 . . 3 (𝑖 = 𝐽 → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
2827adantl 473 . 2 ((𝜑𝑖 = 𝐽) → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
29 ballotlemfval.j . 2 (𝜑𝐽 ∈ ℤ)
30 ovexd 6876 . 2 (𝜑 → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ V)
3121, 28, 29, 30fvmptd 6477 1 (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  {crab 3059  Vcvv 3350  cdif 3729  cin 3731  𝒫 cpw 4315  cmpt 4888  cfv 6068  (class class class)co 6842  1c1 10190   + caddc 10192  cmin 10520   / cdiv 10938  cn 11274  cz 11624  ...cfz 12533  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-cnex 10245  ax-resscn 10246
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-neg 10523  df-z 11625
This theorem is referenced by:  ballotlemfelz  30935  ballotlemfp1  30936  ballotlemfmpn  30939  ballotlemfval0  30940  ballotlemfg  30970  ballotlemfrc  30971
  Copyright terms: Public domain W3C validator