Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval Structured version   Visualization version   GIF version

Theorem ballotlemfval 32356
Description: The value of 𝐹. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotlemfval.c (𝜑𝐶𝑂)
ballotlemfval.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
ballotlemfval (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotlemfval.c . . 3 (𝜑𝐶𝑂)
2 simpl 482 . . . . . . . 8 ((𝑏 = 𝐶𝑖 ∈ ℤ) → 𝑏 = 𝐶)
32ineq2d 4143 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝐶))
43fveq2d 6760 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝐶)))
52difeq2d 4053 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝐶))
65fveq2d 6760 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝐶)))
74, 6oveq12d 7273 . . . . 5 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))))
87mpteq2dva 5170 . . . 4 (𝑏 = 𝐶 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
9 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
10 ineq2 4137 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝑐))
1110fveq2d 6760 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝑐)))
12 difeq2 4047 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝑐))
1312fveq2d 6760 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝑐)))
1411, 13oveq12d 7273 . . . . . . 7 (𝑏 = 𝑐 → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))
1514mpteq2dv 5172 . . . . . 6 (𝑏 = 𝑐 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
1615cbvmptv 5183 . . . . 5 (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))))) = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
179, 16eqtr4i 2769 . . . 4 𝐹 = (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))))
18 zex 12258 . . . . 5 ℤ ∈ V
1918mptex 7081 . . . 4 (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))) ∈ V
208, 17, 19fvmpt 6857 . . 3 (𝐶𝑂 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
211, 20syl 17 . 2 (𝜑 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
22 oveq2 7263 . . . . . 6 (𝑖 = 𝐽 → (1...𝑖) = (1...𝐽))
2322ineq1d 4142 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∩ 𝐶) = ((1...𝐽) ∩ 𝐶))
2423fveq2d 6760 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∩ 𝐶)) = (♯‘((1...𝐽) ∩ 𝐶)))
2522difeq1d 4052 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∖ 𝐶) = ((1...𝐽) ∖ 𝐶))
2625fveq2d 6760 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∖ 𝐶)) = (♯‘((1...𝐽) ∖ 𝐶)))
2724, 26oveq12d 7273 . . 3 (𝑖 = 𝐽 → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
2827adantl 481 . 2 ((𝜑𝑖 = 𝐽) → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
29 ballotlemfval.j . 2 (𝜑𝐽 ∈ ℤ)
30 ovexd 7290 . 2 (𝜑 → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ V)
3121, 28, 29, 30fvmptd 6864 1 (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  𝒫 cpw 4530  cmpt 5153  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cmin 11135   / cdiv 11562  cn 11903  cz 12249  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-neg 11138  df-z 12250
This theorem is referenced by:  ballotlemfelz  32357  ballotlemfp1  32358  ballotlemfmpn  32361  ballotlemfval0  32362  ballotlemfg  32392  ballotlemfrc  32393
  Copyright terms: Public domain W3C validator