Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval Structured version   Visualization version   GIF version

Theorem ballotlemfval 34471
Description: The value of 𝐹. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotlemfval.c (𝜑𝐶𝑂)
ballotlemfval.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
ballotlemfval (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotlemfval.c . . 3 (𝜑𝐶𝑂)
2 simpl 482 . . . . . . . 8 ((𝑏 = 𝐶𝑖 ∈ ℤ) → 𝑏 = 𝐶)
32ineq2d 4228 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝐶))
43fveq2d 6911 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝐶)))
52difeq2d 4136 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝐶))
65fveq2d 6911 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝐶)))
74, 6oveq12d 7449 . . . . 5 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))))
87mpteq2dva 5248 . . . 4 (𝑏 = 𝐶 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
9 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
10 ineq2 4222 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝑐))
1110fveq2d 6911 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝑐)))
12 difeq2 4130 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝑐))
1312fveq2d 6911 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝑐)))
1411, 13oveq12d 7449 . . . . . . 7 (𝑏 = 𝑐 → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))
1514mpteq2dv 5250 . . . . . 6 (𝑏 = 𝑐 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
1615cbvmptv 5261 . . . . 5 (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))))) = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
179, 16eqtr4i 2766 . . . 4 𝐹 = (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))))
18 zex 12620 . . . . 5 ℤ ∈ V
1918mptex 7243 . . . 4 (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))) ∈ V
208, 17, 19fvmpt 7016 . . 3 (𝐶𝑂 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
211, 20syl 17 . 2 (𝜑 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
22 oveq2 7439 . . . . . 6 (𝑖 = 𝐽 → (1...𝑖) = (1...𝐽))
2322ineq1d 4227 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∩ 𝐶) = ((1...𝐽) ∩ 𝐶))
2423fveq2d 6911 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∩ 𝐶)) = (♯‘((1...𝐽) ∩ 𝐶)))
2522difeq1d 4135 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∖ 𝐶) = ((1...𝐽) ∖ 𝐶))
2625fveq2d 6911 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∖ 𝐶)) = (♯‘((1...𝐽) ∖ 𝐶)))
2724, 26oveq12d 7449 . . 3 (𝑖 = 𝐽 → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
2827adantl 481 . 2 ((𝜑𝑖 = 𝐽) → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
29 ballotlemfval.j . 2 (𝜑𝐽 ∈ ℤ)
30 ovexd 7466 . 2 (𝜑 → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ V)
3121, 28, 29, 30fvmptd 7023 1 (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  cdif 3960  cin 3962  𝒫 cpw 4605  cmpt 5231  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156  cmin 11490   / cdiv 11918  cn 12264  cz 12611  ...cfz 13544  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-neg 11493  df-z 12612
This theorem is referenced by:  ballotlemfelz  34472  ballotlemfp1  34473  ballotlemfmpn  34476  ballotlemfval0  34477  ballotlemfg  34507  ballotlemfrc  34508
  Copyright terms: Public domain W3C validator