Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfval Structured version   Visualization version   GIF version

Theorem ballotlemfval 33089
Description: The value of 𝐹. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotlemfval.c (𝜑𝐶𝑂)
ballotlemfval.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
ballotlemfval (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfval
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotlemfval.c . . 3 (𝜑𝐶𝑂)
2 simpl 483 . . . . . . . 8 ((𝑏 = 𝐶𝑖 ∈ ℤ) → 𝑏 = 𝐶)
32ineq2d 4172 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝐶))
43fveq2d 6846 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝐶)))
52difeq2d 4082 . . . . . . 7 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝐶))
65fveq2d 6846 . . . . . 6 ((𝑏 = 𝐶𝑖 ∈ ℤ) → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝐶)))
74, 6oveq12d 7375 . . . . 5 ((𝑏 = 𝐶𝑖 ∈ ℤ) → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))))
87mpteq2dva 5205 . . . 4 (𝑏 = 𝐶 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
9 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
10 ineq2 4166 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∩ 𝑏) = ((1...𝑖) ∩ 𝑐))
1110fveq2d 6846 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∩ 𝑏)) = (♯‘((1...𝑖) ∩ 𝑐)))
12 difeq2 4076 . . . . . . . . 9 (𝑏 = 𝑐 → ((1...𝑖) ∖ 𝑏) = ((1...𝑖) ∖ 𝑐))
1312fveq2d 6846 . . . . . . . 8 (𝑏 = 𝑐 → (♯‘((1...𝑖) ∖ 𝑏)) = (♯‘((1...𝑖) ∖ 𝑐)))
1411, 13oveq12d 7375 . . . . . . 7 (𝑏 = 𝑐 → ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))) = ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))
1514mpteq2dv 5207 . . . . . 6 (𝑏 = 𝑐 → (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
1615cbvmptv 5218 . . . . 5 (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏))))) = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
179, 16eqtr4i 2767 . . . 4 𝐹 = (𝑏𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑏)) − (♯‘((1...𝑖) ∖ 𝑏)))))
18 zex 12508 . . . . 5 ℤ ∈ V
1918mptex 7173 . . . 4 (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))) ∈ V
208, 17, 19fvmpt 6948 . . 3 (𝐶𝑂 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
211, 20syl 17 . 2 (𝜑 → (𝐹𝐶) = (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶)))))
22 oveq2 7365 . . . . . 6 (𝑖 = 𝐽 → (1...𝑖) = (1...𝐽))
2322ineq1d 4171 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∩ 𝐶) = ((1...𝐽) ∩ 𝐶))
2423fveq2d 6846 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∩ 𝐶)) = (♯‘((1...𝐽) ∩ 𝐶)))
2522difeq1d 4081 . . . . 5 (𝑖 = 𝐽 → ((1...𝑖) ∖ 𝐶) = ((1...𝐽) ∖ 𝐶))
2625fveq2d 6846 . . . 4 (𝑖 = 𝐽 → (♯‘((1...𝑖) ∖ 𝐶)) = (♯‘((1...𝐽) ∖ 𝐶)))
2724, 26oveq12d 7375 . . 3 (𝑖 = 𝐽 → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
2827adantl 482 . 2 ((𝜑𝑖 = 𝐽) → ((♯‘((1...𝑖) ∩ 𝐶)) − (♯‘((1...𝑖) ∖ 𝐶))) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
29 ballotlemfval.j . 2 (𝜑𝐽 ∈ ℤ)
30 ovexd 7392 . 2 (𝜑 → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ V)
3121, 28, 29, 30fvmptd 6955 1 (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cdif 3907  cin 3909  𝒫 cpw 4560  cmpt 5188  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054  cmin 11385   / cdiv 11812  cn 12153  cz 12499  ...cfz 13424  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-cnex 11107  ax-resscn 11108
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-neg 11388  df-z 12500
This theorem is referenced by:  ballotlemfelz  33090  ballotlemfp1  33091  ballotlemfmpn  33094  ballotlemfval0  33095  ballotlemfg  33125  ballotlemfrc  33126
  Copyright terms: Public domain W3C validator