![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfelz | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) has values in ℤ. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotlemfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑂) |
ballotlemfval.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
Ref | Expression |
---|---|
ballotlemfelz | ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotlemfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑂) | |
7 | ballotlemfval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 34045 | . 2 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶)))) |
9 | fzfi 13961 | . . . . . 6 ⊢ (1...𝐽) ∈ Fin | |
10 | inss1 4224 | . . . . . 6 ⊢ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽) | |
11 | ssfi 9189 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∩ 𝐶) ∈ Fin) | |
12 | 9, 10, 11 | mp2an 691 | . . . . 5 ⊢ ((1...𝐽) ∩ 𝐶) ∈ Fin |
13 | hashcl 14339 | . . . . 5 ⊢ (((1...𝐽) ∩ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0 |
15 | 14 | nn0zi 12609 | . . 3 ⊢ (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ |
16 | difss 4127 | . . . . . 6 ⊢ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽) | |
17 | ssfi 9189 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∖ 𝐶) ∈ Fin) | |
18 | 9, 16, 17 | mp2an 691 | . . . . 5 ⊢ ((1...𝐽) ∖ 𝐶) ∈ Fin |
19 | hashcl 14339 | . . . . 5 ⊢ (((1...𝐽) ∖ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0) | |
20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0 |
21 | 20 | nn0zi 12609 | . . 3 ⊢ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ |
22 | zsubcl 12626 | . . 3 ⊢ (((♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ ∧ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ) → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ) | |
23 | 15, 21, 22 | mp2an 691 | . 2 ⊢ ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ |
24 | 8, 23 | eqeltrdi 2836 | 1 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3427 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 𝒫 cpw 4598 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 Fincfn 8955 1c1 11131 + caddc 11133 − cmin 11466 / cdiv 11893 ℕcn 12234 ℕ0cn0 12494 ℤcz 12580 ...cfz 13508 ♯chash 14313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-n0 12495 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 |
This theorem is referenced by: ballotlemfc0 34048 ballotlemfcc 34049 ballotlemodife 34053 ballotlemic 34062 ballotlem1c 34063 ballotlemfrceq 34084 ballotlemfrcn0 34085 |
Copyright terms: Public domain | W3C validator |