| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfelz | Structured version Visualization version GIF version | ||
| Description: (𝐹‘𝐶) has values in ℤ. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotlemfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑂) |
| ballotlemfval.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| Ref | Expression |
|---|---|
| ballotlemfelz | ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | ballotlemfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑂) | |
| 7 | ballotlemfval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 34495 | . 2 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶)))) |
| 9 | fzfi 13874 | . . . . . 6 ⊢ (1...𝐽) ∈ Fin | |
| 10 | inss1 4182 | . . . . . 6 ⊢ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽) | |
| 11 | ssfi 9077 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∩ 𝐶) ∈ Fin) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ ((1...𝐽) ∩ 𝐶) ∈ Fin |
| 13 | hashcl 14258 | . . . . 5 ⊢ (((1...𝐽) ∩ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0 |
| 15 | 14 | nn0zi 12492 | . . 3 ⊢ (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ |
| 16 | difss 4081 | . . . . . 6 ⊢ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽) | |
| 17 | ssfi 9077 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∖ 𝐶) ∈ Fin) | |
| 18 | 9, 16, 17 | mp2an 692 | . . . . 5 ⊢ ((1...𝐽) ∖ 𝐶) ∈ Fin |
| 19 | hashcl 14258 | . . . . 5 ⊢ (((1...𝐽) ∖ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0) | |
| 20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0 |
| 21 | 20 | nn0zi 12492 | . . 3 ⊢ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ |
| 22 | zsubcl 12509 | . . 3 ⊢ (((♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ ∧ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ) → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ) | |
| 23 | 15, 21, 22 | mp2an 692 | . 2 ⊢ ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ |
| 24 | 8, 23 | eqeltrdi 2839 | 1 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4545 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 Fincfn 8864 1c1 11002 + caddc 11004 − cmin 11339 / cdiv 11769 ℕcn 12120 ℕ0cn0 12376 ℤcz 12463 ...cfz 13402 ♯chash 14232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 |
| This theorem is referenced by: ballotlemfc0 34498 ballotlemfcc 34499 ballotlemodife 34503 ballotlemic 34512 ballotlem1c 34513 ballotlemfrceq 34534 ballotlemfrcn0 34535 |
| Copyright terms: Public domain | W3C validator |