Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfelz Structured version   Visualization version   GIF version

Theorem ballotlemfelz 31775
Description: (𝐹𝐶) has values in . (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotlemfval.c (𝜑𝐶𝑂)
ballotlemfval.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
ballotlemfelz (𝜑 → ((𝐹𝐶)‘𝐽) ∈ ℤ)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖   𝑖,𝐽   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑐)   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfelz
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotlemfval.c . . 3 (𝜑𝐶𝑂)
7 ballotlemfval.j . . 3 (𝜑𝐽 ∈ ℤ)
81, 2, 3, 4, 5, 6, 7ballotlemfval 31774 . 2 (𝜑 → ((𝐹𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))))
9 fzfi 13342 . . . . . 6 (1...𝐽) ∈ Fin
10 inss1 4190 . . . . . 6 ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽)
11 ssfi 8731 . . . . . 6 (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∩ 𝐶) ∈ Fin)
129, 10, 11mp2an 691 . . . . 5 ((1...𝐽) ∩ 𝐶) ∈ Fin
13 hashcl 13720 . . . . 5 (((1...𝐽) ∩ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0)
1412, 13ax-mp 5 . . . 4 (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0
1514nn0zi 12002 . . 3 (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ
16 difss 4094 . . . . . 6 ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽)
17 ssfi 8731 . . . . . 6 (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∖ 𝐶) ∈ Fin)
189, 16, 17mp2an 691 . . . . 5 ((1...𝐽) ∖ 𝐶) ∈ Fin
19 hashcl 13720 . . . . 5 (((1...𝐽) ∖ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0)
2018, 19ax-mp 5 . . . 4 (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0
2120nn0zi 12002 . . 3 (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ
22 zsubcl 12019 . . 3 (((♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ ∧ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ) → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ)
2315, 21, 22mp2an 691 . 2 ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ
248, 23eqeltrdi 2924 1 (𝜑 → ((𝐹𝐶)‘𝐽) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  {crab 3137  cdif 3916  cin 3918  wss 3919  𝒫 cpw 4522  cmpt 5133  cfv 6344  (class class class)co 7146  Fincfn 8501  1c1 10532   + caddc 10534  cmin 10864   / cdiv 11291  cn 11632  0cn0 11892  cz 11976  ...cfz 12892  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-om 7572  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-hash 13694
This theorem is referenced by:  ballotlemfc0  31777  ballotlemfcc  31778  ballotlemodife  31782  ballotlemic  31791  ballotlem1c  31792  ballotlemfrceq  31813  ballotlemfrcn0  31814
  Copyright terms: Public domain W3C validator