| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfelz | Structured version Visualization version GIF version | ||
| Description: (𝐹‘𝐶) has values in ℤ. (Contributed by Thierry Arnoux, 23-Nov-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotlemfval.c | ⊢ (𝜑 → 𝐶 ∈ 𝑂) |
| ballotlemfval.j | ⊢ (𝜑 → 𝐽 ∈ ℤ) |
| Ref | Expression |
|---|---|
| ballotlemfelz | ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | ballotlemfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑂) | |
| 7 | ballotlemfval.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ ℤ) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ballotlemfval 34454 | . 2 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) = ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶)))) |
| 9 | fzfi 13913 | . . . . . 6 ⊢ (1...𝐽) ∈ Fin | |
| 10 | inss1 4196 | . . . . . 6 ⊢ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽) | |
| 11 | ssfi 9114 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∩ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∩ 𝐶) ∈ Fin) | |
| 12 | 9, 10, 11 | mp2an 692 | . . . . 5 ⊢ ((1...𝐽) ∩ 𝐶) ∈ Fin |
| 13 | hashcl 14297 | . . . . 5 ⊢ (((1...𝐽) ∩ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℕ0 |
| 15 | 14 | nn0zi 12534 | . . 3 ⊢ (♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ |
| 16 | difss 4095 | . . . . . 6 ⊢ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽) | |
| 17 | ssfi 9114 | . . . . . 6 ⊢ (((1...𝐽) ∈ Fin ∧ ((1...𝐽) ∖ 𝐶) ⊆ (1...𝐽)) → ((1...𝐽) ∖ 𝐶) ∈ Fin) | |
| 18 | 9, 16, 17 | mp2an 692 | . . . . 5 ⊢ ((1...𝐽) ∖ 𝐶) ∈ Fin |
| 19 | hashcl 14297 | . . . . 5 ⊢ (((1...𝐽) ∖ 𝐶) ∈ Fin → (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0) | |
| 20 | 18, 19 | ax-mp 5 | . . . 4 ⊢ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℕ0 |
| 21 | 20 | nn0zi 12534 | . . 3 ⊢ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ |
| 22 | zsubcl 12551 | . . 3 ⊢ (((♯‘((1...𝐽) ∩ 𝐶)) ∈ ℤ ∧ (♯‘((1...𝐽) ∖ 𝐶)) ∈ ℤ) → ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ) | |
| 23 | 15, 21, 22 | mp2an 692 | . 2 ⊢ ((♯‘((1...𝐽) ∩ 𝐶)) − (♯‘((1...𝐽) ∖ 𝐶))) ∈ ℤ |
| 24 | 8, 23 | eqeltrdi 2836 | 1 ⊢ (𝜑 → ((𝐹‘𝐶)‘𝐽) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 1c1 11045 + caddc 11047 − cmin 11381 / cdiv 11811 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ...cfz 13444 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 |
| This theorem is referenced by: ballotlemfc0 34457 ballotlemfcc 34458 ballotlemodife 34462 ballotlemic 34471 ballotlem1c 34472 ballotlemfrceq 34493 ballotlemfrcn0 34494 |
| Copyright terms: Public domain | W3C validator |