![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restuni2 | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
restin.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restuni2 | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 481 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ Top) | |
2 | inss2 4232 | . . 3 ⊢ (𝐴 ∩ 𝑋) ⊆ 𝑋 | |
3 | restin.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | restuni 23094 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∩ 𝑋) ⊆ 𝑋) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t (𝐴 ∩ 𝑋))) |
5 | 1, 2, 4 | sylancl 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t (𝐴 ∩ 𝑋))) |
6 | 3 | restin 23098 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
7 | 6 | unieqd 4925 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t (𝐴 ∩ 𝑋))) |
8 | 5, 7 | eqtr4d 2771 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ⊆ wss 3949 ∪ cuni 4912 (class class class)co 7426 ↾t crest 17411 Topctop 22823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-en 8973 df-fin 8976 df-fi 9444 df-rest 17413 df-topgen 17434 df-top 22824 df-topon 22841 df-bases 22877 |
This theorem is referenced by: resttopon2 23100 1stcrest 23385 kgencmp2 23478 |
Copyright terms: Public domain | W3C validator |