Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restuni2 | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
restin.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restuni2 | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → 𝐽 ∈ Top) | |
2 | inss2 4130 | . . 3 ⊢ (𝐴 ∩ 𝑋) ⊆ 𝑋 | |
3 | restin.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 3 | restuni 21926 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∩ 𝑋) ⊆ 𝑋) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t (𝐴 ∩ 𝑋))) |
5 | 1, 2, 4 | sylancl 589 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t (𝐴 ∩ 𝑋))) |
6 | 3 | restin 21930 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) = (𝐽 ↾t (𝐴 ∩ 𝑋))) |
7 | 6 | unieqd 4820 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → ∪ (𝐽 ↾t 𝐴) = ∪ (𝐽 ↾t (𝐴 ∩ 𝑋))) |
8 | 5, 7 | eqtr4d 2777 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3852 ⊆ wss 3853 ∪ cuni 4806 (class class class)co 7183 ↾t crest 16810 Topctop 21657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-1st 7727 df-2nd 7728 df-en 8569 df-fin 8572 df-fi 8961 df-rest 16812 df-topgen 16833 df-top 21658 df-topon 21675 df-bases 21710 |
This theorem is referenced by: resttopon2 21932 1stcrest 22217 kgencmp2 22310 |
Copyright terms: Public domain | W3C validator |