![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restuni | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restuni.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
restuni | β’ ((π½ β Top β§ π΄ β π) β π΄ = βͺ (π½ βΎt π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni.1 | . . . 4 β’ π = βͺ π½ | |
2 | 1 | toptopon 22419 | . . 3 β’ (π½ β Top β π½ β (TopOnβπ)) |
3 | resttopon 22665 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβπ΄)) | |
4 | 2, 3 | sylanb 582 | . 2 β’ ((π½ β Top β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβπ΄)) |
5 | toponuni 22416 | . 2 β’ ((π½ βΎt π΄) β (TopOnβπ΄) β π΄ = βͺ (π½ βΎt π΄)) | |
6 | 4, 5 | syl 17 | 1 β’ ((π½ β Top β§ π΄ β π) β π΄ = βͺ (π½ βΎt π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3949 βͺ cuni 4909 βcfv 6544 (class class class)co 7409 βΎt crest 17366 Topctop 22395 TopOnctopon 22412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-en 8940 df-fin 8943 df-fi 9406 df-rest 17368 df-topgen 17389 df-top 22396 df-topon 22413 df-bases 22449 |
This theorem is referenced by: restuni2 22671 restcld 22676 restopn2 22681 neitr 22684 restcls 22685 restntr 22686 rncmp 22900 cmpsublem 22903 cmpsub 22904 fiuncmp 22908 connsubclo 22928 connima 22929 conncn 22930 nllyrest 22990 cldllycmp 22999 lly1stc 23000 llycmpkgen2 23054 1stckgen 23058 txkgen 23156 xkopjcn 23160 xkococnlem 23163 cnextfres1 23572 cnextfres 23573 cncfcnvcn 24441 cnheibor 24471 evthicc 24976 psercn 25938 abelth 25953 zarmxt1 32860 connpconn 34226 cvmscld 34264 cvmsss2 34265 cvmliftmolem1 34272 cvmliftlem10 34285 cvmlift2lem9 34302 cvmlift2lem11 34304 cvmlift2lem12 34305 cvmlift3lem7 34316 ivthALT 35220 ptrest 36487 poimirlem29 36517 poimirlem30 36518 poimirlem31 36519 poimir 36521 cncfuni 44602 cncfiooicclem1 44609 stoweidlem28 44744 dirkercncflem4 44822 fourierdlem42 44865 restcls2lem 47545 iscnrm3rlem7 47579 |
Copyright terms: Public domain | W3C validator |