| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restuni | Structured version Visualization version GIF version | ||
| Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| restuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| restuni | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | toptopon 22842 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | resttopon 23086 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 5 | toponuni 22839 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 ↾t crest 17334 Topctop 22818 TopOnctopon 22835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-en 8879 df-fin 8882 df-fi 9305 df-rest 17336 df-topgen 17357 df-top 22819 df-topon 22836 df-bases 22871 |
| This theorem is referenced by: restuni2 23092 restcld 23097 restopn2 23102 neitr 23105 restcls 23106 restntr 23107 rncmp 23321 cmpsublem 23324 cmpsub 23325 fiuncmp 23329 connsubclo 23349 connima 23350 conncn 23351 nllyrest 23411 cldllycmp 23420 lly1stc 23421 llycmpkgen2 23475 1stckgen 23479 txkgen 23577 xkopjcn 23581 xkococnlem 23584 cnextfres1 23993 cnextfres 23994 cncfcnvcn 24856 cnheibor 24891 evthicc 25397 psercn 26373 abelth 26388 zarmxt1 33904 connpconn 35290 cvmscld 35328 cvmsss2 35329 cvmliftmolem1 35336 cvmliftlem10 35349 cvmlift2lem9 35366 cvmlift2lem11 35368 cvmlift2lem12 35369 cvmlift3lem7 35380 ivthALT 36390 ptrest 37669 poimirlem29 37699 poimirlem30 37700 poimirlem31 37701 poimir 37703 cncfuni 45998 cncfiooicclem1 46005 stoweidlem28 46140 dirkercncflem4 46218 fourierdlem42 46261 restcls2lem 49027 iscnrm3rlem7 49060 |
| Copyright terms: Public domain | W3C validator |