![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restuni | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restuni.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
restuni | β’ ((π½ β Top β§ π΄ β π) β π΄ = βͺ (π½ βΎt π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni.1 | . . . 4 β’ π = βͺ π½ | |
2 | 1 | toptopon 22850 | . . 3 β’ (π½ β Top β π½ β (TopOnβπ)) |
3 | resttopon 23096 | . . 3 β’ ((π½ β (TopOnβπ) β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβπ΄)) | |
4 | 2, 3 | sylanb 579 | . 2 β’ ((π½ β Top β§ π΄ β π) β (π½ βΎt π΄) β (TopOnβπ΄)) |
5 | toponuni 22847 | . 2 β’ ((π½ βΎt π΄) β (TopOnβπ΄) β π΄ = βͺ (π½ βΎt π΄)) | |
6 | 4, 5 | syl 17 | 1 β’ ((π½ β Top β§ π΄ β π) β π΄ = βͺ (π½ βΎt π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3945 βͺ cuni 4908 βcfv 6547 (class class class)co 7417 βΎt crest 17402 Topctop 22826 TopOnctopon 22843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-en 8963 df-fin 8966 df-fi 9434 df-rest 17404 df-topgen 17425 df-top 22827 df-topon 22844 df-bases 22880 |
This theorem is referenced by: restuni2 23102 restcld 23107 restopn2 23112 neitr 23115 restcls 23116 restntr 23117 rncmp 23331 cmpsublem 23334 cmpsub 23335 fiuncmp 23339 connsubclo 23359 connima 23360 conncn 23361 nllyrest 23421 cldllycmp 23430 lly1stc 23431 llycmpkgen2 23485 1stckgen 23489 txkgen 23587 xkopjcn 23591 xkococnlem 23594 cnextfres1 24003 cnextfres 24004 cncfcnvcn 24877 cnheibor 24912 evthicc 25419 psercn 26394 abelth 26409 zarmxt1 33568 connpconn 34932 cvmscld 34970 cvmsss2 34971 cvmliftmolem1 34978 cvmliftlem10 34991 cvmlift2lem9 35008 cvmlift2lem11 35010 cvmlift2lem12 35011 cvmlift3lem7 35022 ivthALT 35906 ptrest 37179 poimirlem29 37209 poimirlem30 37210 poimirlem31 37211 poimir 37213 cncfuni 45354 cncfiooicclem1 45361 stoweidlem28 45496 dirkercncflem4 45574 fourierdlem42 45617 restcls2lem 48059 iscnrm3rlem7 48093 |
Copyright terms: Public domain | W3C validator |