MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restuni Structured version   Visualization version   GIF version

Theorem restuni 23049
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restuni.1 𝑋 = 𝐽
Assertion
Ref Expression
restuni ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))

Proof of Theorem restuni
StepHypRef Expression
1 restuni.1 . . . 4 𝑋 = 𝐽
21toptopon 22804 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 resttopon 23048 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
42, 3sylanb 581 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
5 toponuni 22801 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = (𝐽t 𝐴))
64, 5syl 17 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914   cuni 4871  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  TopOnctopon 22797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833
This theorem is referenced by:  restuni2  23054  restcld  23059  restopn2  23064  neitr  23067  restcls  23068  restntr  23069  rncmp  23283  cmpsublem  23286  cmpsub  23287  fiuncmp  23291  connsubclo  23311  connima  23312  conncn  23313  nllyrest  23373  cldllycmp  23382  lly1stc  23383  llycmpkgen2  23437  1stckgen  23441  txkgen  23539  xkopjcn  23543  xkococnlem  23546  cnextfres1  23955  cnextfres  23956  cncfcnvcn  24819  cnheibor  24854  evthicc  25360  psercn  26336  abelth  26351  zarmxt1  33870  connpconn  35222  cvmscld  35260  cvmsss2  35261  cvmliftmolem1  35268  cvmliftlem10  35281  cvmlift2lem9  35298  cvmlift2lem11  35300  cvmlift2lem12  35301  cvmlift3lem7  35312  ivthALT  36323  ptrest  37613  poimirlem29  37643  poimirlem30  37644  poimirlem31  37645  poimir  37647  cncfuni  45884  cncfiooicclem1  45891  stoweidlem28  46026  dirkercncflem4  46104  fourierdlem42  46147  restcls2lem  48901  iscnrm3rlem7  48934
  Copyright terms: Public domain W3C validator