MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restuni Structured version   Visualization version   GIF version

Theorem restuni 21338
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restuni.1 𝑋 = 𝐽
Assertion
Ref Expression
restuni ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))

Proof of Theorem restuni
StepHypRef Expression
1 restuni.1 . . . 4 𝑋 = 𝐽
21toptopon 21093 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 resttopon 21337 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
42, 3sylanb 578 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
5 toponuni 21090 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = (𝐽t 𝐴))
64, 5syl 17 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wss 3799   cuni 4659  cfv 6124  (class class class)co 6906  t crest 16435  Topctop 21069  TopOnctopon 21086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-oadd 7831  df-er 8010  df-en 8224  df-fin 8227  df-fi 8587  df-rest 16437  df-topgen 16458  df-top 21070  df-topon 21087  df-bases 21122
This theorem is referenced by:  restuni2  21343  restcld  21348  restopn2  21353  neitr  21356  restcls  21357  restntr  21358  rncmp  21571  cmpsublem  21574  cmpsub  21575  fiuncmp  21579  connsubclo  21599  connima  21600  conncn  21601  nllyrest  21661  cldllycmp  21670  lly1stc  21671  llycmpkgen2  21725  1stckgen  21729  txkgen  21827  xkopjcn  21831  xkococnlem  21834  cnextfres1  22243  cnextfres  22244  cncfcnvcn  23095  cnheibor  23125  evthicc  23626  psercn  24580  abelth  24595  connpconn  31764  cvmscld  31802  cvmsss2  31803  cvmliftmolem1  31810  cvmliftlem10  31823  cvmlift2lem9  31840  cvmlift2lem11  31842  cvmlift2lem12  31843  cvmlift3lem7  31854  ivthALT  32869  ptrest  33953  poimirlem29  33983  poimirlem30  33984  poimirlem31  33985  poimir  33987  cncfuni  40895  cncfiooicclem1  40902  stoweidlem28  41040  dirkercncflem4  41118  fourierdlem42  41161
  Copyright terms: Public domain W3C validator