![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restuni | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restuni | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | toptopon 22938 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
3 | resttopon 23184 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
5 | toponuni 22935 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | |
6 | 4, 5 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 ∪ cuni 4911 ‘cfv 6562 (class class class)co 7430 ↾t crest 17466 Topctop 22914 TopOnctopon 22931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-en 8984 df-fin 8987 df-fi 9448 df-rest 17468 df-topgen 17489 df-top 22915 df-topon 22932 df-bases 22968 |
This theorem is referenced by: restuni2 23190 restcld 23195 restopn2 23200 neitr 23203 restcls 23204 restntr 23205 rncmp 23419 cmpsublem 23422 cmpsub 23423 fiuncmp 23427 connsubclo 23447 connima 23448 conncn 23449 nllyrest 23509 cldllycmp 23518 lly1stc 23519 llycmpkgen2 23573 1stckgen 23577 txkgen 23675 xkopjcn 23679 xkococnlem 23682 cnextfres1 24091 cnextfres 24092 cncfcnvcn 24965 cnheibor 25000 evthicc 25507 psercn 26484 abelth 26499 zarmxt1 33840 connpconn 35219 cvmscld 35257 cvmsss2 35258 cvmliftmolem1 35265 cvmliftlem10 35278 cvmlift2lem9 35295 cvmlift2lem11 35297 cvmlift2lem12 35298 cvmlift3lem7 35309 ivthALT 36317 ptrest 37605 poimirlem29 37635 poimirlem30 37636 poimirlem31 37637 poimir 37639 cncfuni 45841 cncfiooicclem1 45848 stoweidlem28 45983 dirkercncflem4 46061 fourierdlem42 46104 restcls2lem 48708 iscnrm3rlem7 48742 |
Copyright terms: Public domain | W3C validator |