Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restuni | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
restuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
restuni | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | toptopon 22172 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
3 | resttopon 22418 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
4 | 2, 3 | sylanb 581 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
5 | toponuni 22169 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) | |
6 | 4, 5 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ∪ cuni 4852 ‘cfv 6479 (class class class)co 7337 ↾t crest 17228 Topctop 22148 TopOnctopon 22165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-en 8805 df-fin 8808 df-fi 9268 df-rest 17230 df-topgen 17251 df-top 22149 df-topon 22166 df-bases 22202 |
This theorem is referenced by: restuni2 22424 restcld 22429 restopn2 22434 neitr 22437 restcls 22438 restntr 22439 rncmp 22653 cmpsublem 22656 cmpsub 22657 fiuncmp 22661 connsubclo 22681 connima 22682 conncn 22683 nllyrest 22743 cldllycmp 22752 lly1stc 22753 llycmpkgen2 22807 1stckgen 22811 txkgen 22909 xkopjcn 22913 xkococnlem 22916 cnextfres1 23325 cnextfres 23326 cncfcnvcn 24194 cnheibor 24224 evthicc 24729 psercn 25691 abelth 25706 zarmxt1 32128 connpconn 33496 cvmscld 33534 cvmsss2 33535 cvmliftmolem1 33542 cvmliftlem10 33555 cvmlift2lem9 33572 cvmlift2lem11 33574 cvmlift2lem12 33575 cvmlift3lem7 33586 ivthALT 34620 ptrest 35889 poimirlem29 35919 poimirlem30 35920 poimirlem31 35921 poimir 35923 cncfuni 43771 cncfiooicclem1 43778 stoweidlem28 43913 dirkercncflem4 43991 fourierdlem42 44034 restcls2lem 46565 iscnrm3rlem7 46599 |
Copyright terms: Public domain | W3C validator |