MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restuni Structured version   Visualization version   GIF version

Theorem restuni 23065
Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
restuni.1 𝑋 = 𝐽
Assertion
Ref Expression
restuni ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))

Proof of Theorem restuni
StepHypRef Expression
1 restuni.1 . . . 4 𝑋 = 𝐽
21toptopon 22820 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 resttopon 23064 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
42, 3sylanb 581 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
5 toponuni 22817 . 2 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = (𝐽t 𝐴))
64, 5syl 17 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → 𝐴 = (𝐽t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905   cuni 4861  cfv 6486  (class class class)co 7353  t crest 17342  Topctop 22796  TopOnctopon 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849
This theorem is referenced by:  restuni2  23070  restcld  23075  restopn2  23080  neitr  23083  restcls  23084  restntr  23085  rncmp  23299  cmpsublem  23302  cmpsub  23303  fiuncmp  23307  connsubclo  23327  connima  23328  conncn  23329  nllyrest  23389  cldllycmp  23398  lly1stc  23399  llycmpkgen2  23453  1stckgen  23457  txkgen  23555  xkopjcn  23559  xkococnlem  23562  cnextfres1  23971  cnextfres  23972  cncfcnvcn  24835  cnheibor  24870  evthicc  25376  psercn  26352  abelth  26367  zarmxt1  33846  connpconn  35207  cvmscld  35245  cvmsss2  35246  cvmliftmolem1  35253  cvmliftlem10  35266  cvmlift2lem9  35283  cvmlift2lem11  35285  cvmlift2lem12  35286  cvmlift3lem7  35297  ivthALT  36308  ptrest  37598  poimirlem29  37628  poimirlem30  37629  poimirlem31  37630  poimir  37632  cncfuni  45868  cncfiooicclem1  45875  stoweidlem28  46010  dirkercncflem4  46088  fourierdlem42  46131  restcls2lem  48885  iscnrm3rlem7  48918
  Copyright terms: Public domain W3C validator