MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssm Structured version   Visualization version   GIF version

Theorem blssm 24443
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssm ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)

Proof of Theorem blssm
StepHypRef Expression
1 blf 24432 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2 fovcdm 7602 . . 3 (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
31, 2syl3an1 1162 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
43elpwid 4613 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2105  wss 3962  𝒫 cpw 4604   × cxp 5686  wf 6558  cfv 6562  (class class class)co 7430  *cxr 11291  ∞Metcxmet 21366  ballcbl 21368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-map 8866  df-xr 11296  df-psmet 21373  df-xmet 21374  df-bl 21376
This theorem is referenced by:  blpnfctr  24461  xmetresbl  24462  imasf1oxms  24517  prdsbl  24519  blcld  24533  blcls  24534  prdsxmslem2  24557  metcnp  24569  cnllycmp  25001  lebnumlem3  25008  lebnum  25009  cfil3i  25316  iscfil3  25320  cfilfcls  25321  iscmet3lem2  25339  equivcfil  25346  caublcls  25356  relcmpcmet  25365  cmpcmet  25366  cncmet  25369  bcthlem2  25372  bcthlem4  25374  dvlip2  26048  dv11cn  26054  pserdvlem2  26486  pserdv  26487  abelthlem3  26491  abelthlem5  26493  dvlog2lem  26708  dvlog2  26709  efopnlem2  26713  efopn  26714  logtayl  26716  efrlim  27026  efrlimOLD  27027  blsconn  35228  sstotbnd2  37760  equivtotbnd  37764  isbnd2  37769  blbnd  37773  totbndbnd  37775  prdstotbnd  37780  prdsbnd2  37781  ismtyima  37789  heiborlem3  37799  heiborlem8  37804
  Copyright terms: Public domain W3C validator