![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blssm | Structured version Visualization version GIF version |
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blssm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blf 24432 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
2 | fovcdm 7602 | . . 3 ⊢ (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) | |
3 | 1, 2 | syl3an1 1162 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) |
4 | 3 | elpwid 4613 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3962 𝒫 cpw 4604 × cxp 5686 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℝ*cxr 11291 ∞Metcxmet 21366 ballcbl 21368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-map 8866 df-xr 11296 df-psmet 21373 df-xmet 21374 df-bl 21376 |
This theorem is referenced by: blpnfctr 24461 xmetresbl 24462 imasf1oxms 24517 prdsbl 24519 blcld 24533 blcls 24534 prdsxmslem2 24557 metcnp 24569 cnllycmp 25001 lebnumlem3 25008 lebnum 25009 cfil3i 25316 iscfil3 25320 cfilfcls 25321 iscmet3lem2 25339 equivcfil 25346 caublcls 25356 relcmpcmet 25365 cmpcmet 25366 cncmet 25369 bcthlem2 25372 bcthlem4 25374 dvlip2 26048 dv11cn 26054 pserdvlem2 26486 pserdv 26487 abelthlem3 26491 abelthlem5 26493 dvlog2lem 26708 dvlog2 26709 efopnlem2 26713 efopn 26714 logtayl 26716 efrlim 27026 efrlimOLD 27027 blsconn 35228 sstotbnd2 37760 equivtotbnd 37764 isbnd2 37769 blbnd 37773 totbndbnd 37775 prdstotbnd 37780 prdsbnd2 37781 ismtyima 37789 heiborlem3 37799 heiborlem8 37804 |
Copyright terms: Public domain | W3C validator |