| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blssm | Structured version Visualization version GIF version | ||
| Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| blssm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blf 24311 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
| 2 | fovcdm 7523 | . . 3 ⊢ (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) |
| 4 | 3 | elpwid 4562 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℝ*cxr 11167 ∞Metcxmet 21264 ballcbl 21266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-xr 11172 df-psmet 21271 df-xmet 21272 df-bl 21274 |
| This theorem is referenced by: blpnfctr 24340 xmetresbl 24341 imasf1oxms 24393 prdsbl 24395 blcld 24409 blcls 24410 prdsxmslem2 24433 metcnp 24445 cnllycmp 24871 lebnumlem3 24878 lebnum 24879 cfil3i 25185 iscfil3 25189 cfilfcls 25190 iscmet3lem2 25208 equivcfil 25215 caublcls 25225 relcmpcmet 25234 cmpcmet 25235 cncmet 25238 bcthlem2 25241 bcthlem4 25243 dvlip2 25916 dv11cn 25922 pserdvlem2 26354 pserdv 26355 abelthlem3 26359 abelthlem5 26361 dvlog2lem 26577 dvlog2 26578 efopnlem2 26582 efopn 26583 logtayl 26585 efrlim 26895 efrlimOLD 26896 blsconn 35219 sstotbnd2 37756 equivtotbnd 37760 isbnd2 37765 blbnd 37769 totbndbnd 37771 prdstotbnd 37776 prdsbnd2 37777 ismtyima 37785 heiborlem3 37795 heiborlem8 37800 |
| Copyright terms: Public domain | W3C validator |