| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blssm | Structured version Visualization version GIF version | ||
| Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| blssm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blf 24323 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
| 2 | fovcdm 7516 | . . 3 ⊢ (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) |
| 4 | 3 | elpwid 4559 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3902 𝒫 cpw 4550 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝ*cxr 11145 ∞Metcxmet 21277 ballcbl 21279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-xr 11150 df-psmet 21284 df-xmet 21285 df-bl 21287 |
| This theorem is referenced by: blpnfctr 24352 xmetresbl 24353 imasf1oxms 24405 prdsbl 24407 blcld 24421 blcls 24422 prdsxmslem2 24445 metcnp 24457 cnllycmp 24883 lebnumlem3 24890 lebnum 24891 cfil3i 25197 iscfil3 25201 cfilfcls 25202 iscmet3lem2 25220 equivcfil 25227 caublcls 25237 relcmpcmet 25246 cmpcmet 25247 cncmet 25250 bcthlem2 25253 bcthlem4 25255 dvlip2 25928 dv11cn 25934 pserdvlem2 26366 pserdv 26367 abelthlem3 26371 abelthlem5 26373 dvlog2lem 26589 dvlog2 26590 efopnlem2 26594 efopn 26595 logtayl 26597 efrlim 26907 efrlimOLD 26908 blsconn 35286 sstotbnd2 37820 equivtotbnd 37824 isbnd2 37829 blbnd 37833 totbndbnd 37835 prdstotbnd 37840 prdsbnd2 37841 ismtyima 37849 heiborlem3 37859 heiborlem8 37864 |
| Copyright terms: Public domain | W3C validator |