Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > blssm | Structured version Visualization version GIF version |
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blssm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blf 23605 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
2 | fovcdm 7474 | . . 3 ⊢ (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) | |
3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) |
4 | 3 | elpwid 4548 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2104 ⊆ wss 3892 𝒫 cpw 4539 × cxp 5598 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 ℝ*cxr 11054 ∞Metcxmet 20627 ballcbl 20629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-map 8648 df-xr 11059 df-psmet 20634 df-xmet 20635 df-bl 20637 |
This theorem is referenced by: blpnfctr 23634 xmetresbl 23635 imasf1oxms 23690 prdsbl 23692 blcld 23706 blcls 23707 prdsxmslem2 23730 metcnp 23742 cnllycmp 24164 lebnumlem3 24171 lebnum 24172 cfil3i 24478 iscfil3 24482 cfilfcls 24483 iscmet3lem2 24501 equivcfil 24508 caublcls 24518 relcmpcmet 24527 cmpcmet 24528 cncmet 24531 bcthlem2 24534 bcthlem4 24536 dvlip2 25204 dv11cn 25210 pserdvlem2 25632 pserdv 25633 abelthlem3 25637 abelthlem5 25639 dvlog2lem 25852 dvlog2 25853 efopnlem2 25857 efopn 25858 logtayl 25860 efrlim 26164 blsconn 33251 sstotbnd2 35976 equivtotbnd 35980 isbnd2 35985 blbnd 35989 totbndbnd 35991 prdstotbnd 35996 prdsbnd2 35997 ismtyima 36005 heiborlem3 36015 heiborlem8 36020 |
Copyright terms: Public domain | W3C validator |