MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssm Structured version   Visualization version   GIF version

Theorem blssm 23552
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssm ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)

Proof of Theorem blssm
StepHypRef Expression
1 blf 23541 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2 fovrn 7433 . . 3 (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
31, 2syl3an1 1161 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
43elpwid 4549 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085  wcel 2109  wss 3891  𝒫 cpw 4538   × cxp 5586  wf 6426  cfv 6430  (class class class)co 7268  *cxr 10992  ∞Metcxmet 20563  ballcbl 20565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-map 8591  df-xr 10997  df-psmet 20570  df-xmet 20571  df-bl 20573
This theorem is referenced by:  blpnfctr  23570  xmetresbl  23571  imasf1oxms  23626  prdsbl  23628  blcld  23642  blcls  23643  prdsxmslem2  23666  metcnp  23678  cnllycmp  24100  lebnumlem3  24107  lebnum  24108  cfil3i  24414  iscfil3  24418  cfilfcls  24419  iscmet3lem2  24437  equivcfil  24444  caublcls  24454  relcmpcmet  24463  cmpcmet  24464  cncmet  24467  bcthlem2  24470  bcthlem4  24472  dvlip2  25140  dv11cn  25146  pserdvlem2  25568  pserdv  25569  abelthlem3  25573  abelthlem5  25575  dvlog2lem  25788  dvlog2  25789  efopnlem2  25793  efopn  25794  logtayl  25796  efrlim  26100  blsconn  33185  sstotbnd2  35911  equivtotbnd  35915  isbnd2  35920  blbnd  35924  totbndbnd  35926  prdstotbnd  35931  prdsbnd2  35932  ismtyima  35940  heiborlem3  35950  heiborlem8  35955
  Copyright terms: Public domain W3C validator