MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssm Structured version   Visualization version   GIF version

Theorem blssm 24313
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssm ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)

Proof of Theorem blssm
StepHypRef Expression
1 blf 24302 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2 fovcdm 7562 . . 3 (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
31, 2syl3an1 1163 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
43elpwid 4575 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wss 3917  𝒫 cpw 4566   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  *cxr 11214  ∞Metcxmet 21256  ballcbl 21258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-xr 11219  df-psmet 21263  df-xmet 21264  df-bl 21266
This theorem is referenced by:  blpnfctr  24331  xmetresbl  24332  imasf1oxms  24384  prdsbl  24386  blcld  24400  blcls  24401  prdsxmslem2  24424  metcnp  24436  cnllycmp  24862  lebnumlem3  24869  lebnum  24870  cfil3i  25176  iscfil3  25180  cfilfcls  25181  iscmet3lem2  25199  equivcfil  25206  caublcls  25216  relcmpcmet  25225  cmpcmet  25226  cncmet  25229  bcthlem2  25232  bcthlem4  25234  dvlip2  25907  dv11cn  25913  pserdvlem2  26345  pserdv  26346  abelthlem3  26350  abelthlem5  26352  dvlog2lem  26568  dvlog2  26569  efopnlem2  26573  efopn  26574  logtayl  26576  efrlim  26886  efrlimOLD  26887  blsconn  35238  sstotbnd2  37775  equivtotbnd  37779  isbnd2  37784  blbnd  37788  totbndbnd  37790  prdstotbnd  37795  prdsbnd2  37796  ismtyima  37804  heiborlem3  37814  heiborlem8  37819
  Copyright terms: Public domain W3C validator