![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blssm | Structured version Visualization version GIF version |
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blssm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blf 24438 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
2 | fovcdm 7620 | . . 3 ⊢ (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) | |
3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) |
4 | 3 | elpwid 4631 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3976 𝒫 cpw 4622 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝ*cxr 11323 ∞Metcxmet 21372 ballcbl 21374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-xr 11328 df-psmet 21379 df-xmet 21380 df-bl 21382 |
This theorem is referenced by: blpnfctr 24467 xmetresbl 24468 imasf1oxms 24523 prdsbl 24525 blcld 24539 blcls 24540 prdsxmslem2 24563 metcnp 24575 cnllycmp 25007 lebnumlem3 25014 lebnum 25015 cfil3i 25322 iscfil3 25326 cfilfcls 25327 iscmet3lem2 25345 equivcfil 25352 caublcls 25362 relcmpcmet 25371 cmpcmet 25372 cncmet 25375 bcthlem2 25378 bcthlem4 25380 dvlip2 26054 dv11cn 26060 pserdvlem2 26490 pserdv 26491 abelthlem3 26495 abelthlem5 26497 dvlog2lem 26712 dvlog2 26713 efopnlem2 26717 efopn 26718 logtayl 26720 efrlim 27030 efrlimOLD 27031 blsconn 35212 sstotbnd2 37734 equivtotbnd 37738 isbnd2 37743 blbnd 37747 totbndbnd 37749 prdstotbnd 37754 prdsbnd2 37755 ismtyima 37763 heiborlem3 37773 heiborlem8 37778 |
Copyright terms: Public domain | W3C validator |