MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssm Structured version   Visualization version   GIF version

Theorem blssm 24306
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssm ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)

Proof of Theorem blssm
StepHypRef Expression
1 blf 24295 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2 fovcdm 7559 . . 3 (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
31, 2syl3an1 1163 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
43elpwid 4572 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wss 3914  𝒫 cpw 4563   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  *cxr 11207  ∞Metcxmet 21249  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-xr 11212  df-psmet 21256  df-xmet 21257  df-bl 21259
This theorem is referenced by:  blpnfctr  24324  xmetresbl  24325  imasf1oxms  24377  prdsbl  24379  blcld  24393  blcls  24394  prdsxmslem2  24417  metcnp  24429  cnllycmp  24855  lebnumlem3  24862  lebnum  24863  cfil3i  25169  iscfil3  25173  cfilfcls  25174  iscmet3lem2  25192  equivcfil  25199  caublcls  25209  relcmpcmet  25218  cmpcmet  25219  cncmet  25222  bcthlem2  25225  bcthlem4  25227  dvlip2  25900  dv11cn  25906  pserdvlem2  26338  pserdv  26339  abelthlem3  26343  abelthlem5  26345  dvlog2lem  26561  dvlog2  26562  efopnlem2  26566  efopn  26567  logtayl  26569  efrlim  26879  efrlimOLD  26880  blsconn  35231  sstotbnd2  37768  equivtotbnd  37772  isbnd2  37777  blbnd  37781  totbndbnd  37783  prdstotbnd  37788  prdsbnd2  37789  ismtyima  37797  heiborlem3  37807  heiborlem8  37812
  Copyright terms: Public domain W3C validator