| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blssm | Structured version Visualization version GIF version | ||
| Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
| Ref | Expression |
|---|---|
| blssm | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blf 24325 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) | |
| 2 | fovcdm 7524 | . . 3 ⊢ (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋) |
| 4 | 3 | elpwid 4560 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ⊆ wss 3898 𝒫 cpw 4551 × cxp 5619 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℝ*cxr 11154 ∞Metcxmet 21280 ballcbl 21282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 df-xr 11159 df-psmet 21287 df-xmet 21288 df-bl 21290 |
| This theorem is referenced by: blpnfctr 24354 xmetresbl 24355 imasf1oxms 24407 prdsbl 24409 blcld 24423 blcls 24424 prdsxmslem2 24447 metcnp 24459 cnllycmp 24885 lebnumlem3 24892 lebnum 24893 cfil3i 25199 iscfil3 25203 cfilfcls 25204 iscmet3lem2 25222 equivcfil 25229 caublcls 25239 relcmpcmet 25248 cmpcmet 25249 cncmet 25252 bcthlem2 25255 bcthlem4 25257 dvlip2 25930 dv11cn 25936 pserdvlem2 26368 pserdv 26369 abelthlem3 26373 abelthlem5 26375 dvlog2lem 26591 dvlog2 26592 efopnlem2 26596 efopn 26597 logtayl 26599 efrlim 26909 efrlimOLD 26910 blsconn 35311 sstotbnd2 37837 equivtotbnd 37841 isbnd2 37846 blbnd 37850 totbndbnd 37852 prdstotbnd 37857 prdsbnd2 37858 ismtyima 37866 heiborlem3 37876 heiborlem8 37881 |
| Copyright terms: Public domain | W3C validator |