MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssm Structured version   Visualization version   GIF version

Theorem blssm 22433
Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssm ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)

Proof of Theorem blssm
StepHypRef Expression
1 blf 22422 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2 fovrn 7030 . . 3 (((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
31, 2syl3an1 1195 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝒫 𝑋)
43elpwid 4363 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1100  wcel 2156  wss 3769  𝒫 cpw 4351   × cxp 5309  wf 6093  cfv 6097  (class class class)co 6870  *cxr 10354  ∞Metcxmt 19935  ballcbl 19937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-1st 7394  df-2nd 7395  df-map 8090  df-xr 10359  df-psmet 19942  df-xmet 19943  df-bl 19945
This theorem is referenced by:  blpnfctr  22451  xmetresbl  22452  imasf1oxms  22504  prdsbl  22506  blcld  22520  blcls  22521  prdsxmslem2  22544  metcnp  22556  cnllycmp  22965  lebnumlem3  22972  lebnum  22973  cfil3i  23277  iscfil3  23281  cfilfcls  23282  iscmet3lem2  23300  equivcfil  23307  caublcls  23317  relcmpcmet  23325  cmpcmet  23326  cncmet  23329  bcthlem2  23332  bcthlem4  23334  dvlip2  23971  dv11cn  23977  pserdvlem2  24395  pserdv  24396  abelthlem3  24400  abelthlem5  24402  dvlog2lem  24611  dvlog2  24612  efopnlem2  24616  efopn  24617  logtayl  24619  efrlim  24909  blsconn  31547  sstotbnd2  33882  equivtotbnd  33886  isbnd2  33891  blbnd  33895  totbndbnd  33897  prdstotbnd  33902  prdsbnd2  33903  ismtyima  33911  heiborlem3  33921  heiborlem8  33926
  Copyright terms: Public domain W3C validator