MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blssex Structured version   Visualization version   GIF version

Theorem blssex 24349
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssex ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Distinct variable groups:   𝑥,𝑟,𝐴   𝐷,𝑟,𝑥   𝑃,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem blssex
StepHypRef Expression
1 blss 24347 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥)
2 sstr 3952 . . . . . . . . 9 (((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥𝑥𝐴) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
32expcom 413 . . . . . . . 8 (𝑥𝐴 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
43reximdv 3148 . . . . . . 7 (𝑥𝐴 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
51, 4syl5com 31 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
653expa 1118 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) ∧ 𝑃𝑥) → (𝑥𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
76expimpd 453 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
87adantlr 715 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
98rexlimdva 3134 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
10 simpll 766 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋))
11 simplr 768 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃𝑋)
12 rpxr 12939 . . . . . 6 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
1312ad2antrl 728 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ*)
14 blelrn 24339 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
1510, 11, 13, 14syl3anc 1373 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷))
16 simprl 770 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ+)
17 blcntr 24335 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
1810, 11, 16, 17syl3anc 1373 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
19 simprr 772 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)
20 eleq2 2817 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑃𝑥𝑃 ∈ (𝑃(ball‘𝐷)𝑟)))
21 sseq1 3969 . . . . . 6 (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑥𝐴 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
2220, 21anbi12d 632 . . . . 5 (𝑥 = (𝑃(ball‘𝐷)𝑟) → ((𝑃𝑥𝑥𝐴) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)))
2322rspcev 3585 . . . 4 (((𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷) ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2415, 18, 19, 23syl12anc 836 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴))
2524rexlimdvaa 3135 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴)))
269, 25impbid 212 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3911  ran crn 5632  cfv 6499  (class class class)co 7369  *cxr 11185  +crp 12929  ∞Metcxmet 21282  ballcbl 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-n0 12421  df-z 12508  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-psmet 21289  df-xmet 21290  df-bl 21292
This theorem is referenced by:  blbas  24352  elmopn2  24367  mopni2  24415  metss  24430  tgioo  24718
  Copyright terms: Public domain W3C validator