![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blssex | Structured version Visualization version GIF version |
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blssex | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blss 24450 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥) | |
2 | sstr 4003 | . . . . . . . . 9 ⊢ (((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴) | |
3 | 2 | expcom 413 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐴 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
4 | 3 | reximdv 3167 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑥 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
5 | 1, 4 | syl5com 31 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷) ∧ 𝑃 ∈ 𝑥) → (𝑥 ⊆ 𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
6 | 5 | 3expa 1117 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) ∧ 𝑃 ∈ 𝑥) → (𝑥 ⊆ 𝐴 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
7 | 6 | expimpd 453 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
8 | 7 | adantlr 715 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑥 ∈ ran (ball‘𝐷)) → ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
9 | 8 | rexlimdva 3152 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
10 | simpll 767 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝐷 ∈ (∞Met‘𝑋)) | |
11 | simplr 769 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ 𝑋) | |
12 | rpxr 13041 | . . . . . 6 ⊢ (𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ*) | |
13 | 12 | ad2antrl 728 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ*) |
14 | blelrn 24442 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷)) | |
15 | 10, 11, 13, 14 | syl3anc 1370 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷)) |
16 | simprl 771 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑟 ∈ ℝ+) | |
17 | blcntr 24438 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) | |
18 | 10, 11, 16, 17 | syl3anc 1370 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) |
19 | simprr 773 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴) | |
20 | eleq2 2827 | . . . . . 6 ⊢ (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))) | |
21 | sseq1 4020 | . . . . . 6 ⊢ (𝑥 = (𝑃(ball‘𝐷)𝑟) → (𝑥 ⊆ 𝐴 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) | |
22 | 20, 21 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = (𝑃(ball‘𝐷)𝑟) → ((𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))) |
23 | 22 | rspcev 3621 | . . . 4 ⊢ (((𝑃(ball‘𝐷)𝑟) ∈ ran (ball‘𝐷) ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
24 | 15, 18, 19, 23 | syl12anc 837 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑟 ∈ ℝ+ ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
25 | 24 | rexlimdvaa 3153 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴 → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
26 | 9, 25 | impbid 212 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 ran crn 5689 ‘cfv 6562 (class class class)co 7430 ℝ*cxr 11291 ℝ+crp 13031 ∞Metcxmet 21366 ballcbl 21368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-psmet 21373 df-xmet 21374 df-bl 21376 |
This theorem is referenced by: blbas 24455 elmopn2 24470 mopni2 24521 metss 24536 tgioo 24831 |
Copyright terms: Public domain | W3C validator |