Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnbl Structured version   Visualization version   GIF version

Theorem unirnbl 23032
 Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
unirnbl (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)

Proof of Theorem unirnbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 blf 23019 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
21frnd 6523 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
3 sspwuni 5024 . . 3 (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ran (ball‘𝐷) ⊆ 𝑋)
42, 3sylib 220 . 2 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝑋)
5 1rp 12396 . . . 4 1 ∈ ℝ+
6 blcntr 23025 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
75, 6mp3an3 1446 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
8 1xr 10702 . . . 4 1 ∈ ℝ*
9 blelrn 23029 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
108, 9mp3an3 1446 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
11 elunii 4845 . . 3 ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ran (ball‘𝐷))
127, 10, 11syl2anc 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → 𝑥 ran (ball‘𝐷))
134, 12eqelssd 3990 1 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1537   ∈ wcel 2114   ⊆ wss 3938  𝒫 cpw 4541  ∪ cuni 4840   × cxp 5555  ran crn 5558  ‘cfv 6357  (class class class)co 7158  1c1 10540  ℝ*cxr 10676  ℝ+crp 12392  ∞Metcxmet 20532  ballcbl 20534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-rp 12393  df-psmet 20539  df-xmet 20540  df-bl 20542 This theorem is referenced by:  blbas  23042  mopntopon  23051  elmopn  23054  imasf1oxms  23101  metss  23120
 Copyright terms: Public domain W3C validator