MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unirnbl Structured version   Visualization version   GIF version

Theorem unirnbl 24342
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
unirnbl (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)

Proof of Theorem unirnbl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 blf 24329 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
21frnd 6678 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝒫 𝑋)
3 sspwuni 5059 . . 3 (ran (ball‘𝐷) ⊆ 𝒫 𝑋 ran (ball‘𝐷) ⊆ 𝑋)
42, 3sylib 218 . 2 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝑋)
5 1rp 12933 . . . 4 1 ∈ ℝ+
6 blcntr 24335 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
75, 6mp3an3 1452 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
8 1xr 11211 . . . 4 1 ∈ ℝ*
9 blelrn 24339 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ 1 ∈ ℝ*) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
108, 9mp3an3 1452 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷))
11 elunii 4872 . . 3 ((𝑥 ∈ (𝑥(ball‘𝐷)1) ∧ (𝑥(ball‘𝐷)1) ∈ ran (ball‘𝐷)) → 𝑥 ran (ball‘𝐷))
127, 10, 11syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → 𝑥 ran (ball‘𝐷))
134, 12eqelssd 3965 1 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867   × cxp 5629  ran crn 5632  cfv 6499  (class class class)co 7369  1c1 11047  *cxr 11185  +crp 12929  ∞Metcxmet 21282  ballcbl 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-rp 12930  df-psmet 21289  df-xmet 21290  df-bl 21292
This theorem is referenced by:  blbas  24352  mopntopon  24361  elmopn  24364  imasf1oxms  24411  metss  24430
  Copyright terms: Public domain W3C validator