![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blopn | Structured version Visualization version GIF version |
Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
mopni.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
blopn | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopni.1 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | blssopn 22776 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝐽) |
3 | 2 | 3ad2ant1 1124 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → ran (ball‘𝐷) ⊆ 𝐽) |
4 | blelrn 22698 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷)) | |
5 | 3, 4 | sseldd 3885 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ⊆ wss 3854 ran crn 5436 ‘cfv 6217 (class class class)co 7007 ℝ*cxr 10509 ∞Metcxmet 20200 ballcbl 20202 MetOpencmopn 20205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-map 8249 df-en 8348 df-dom 8349 df-sdom 8350 df-sup 8742 df-inf 8743 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-n0 11735 df-z 11819 df-uz 12083 df-q 12187 df-rp 12229 df-xneg 12346 df-xadd 12347 df-xmul 12348 df-topgen 16534 df-psmet 20207 df-xmet 20208 df-bl 20210 df-mopn 20211 df-bases 21226 |
This theorem is referenced by: neibl 22782 blnei 22783 methaus 22801 met1stc 22802 met2ndci 22803 metrest 22805 prdsxmslem2 22810 metcnp3 22821 zdis 23095 metdseq0 23133 metnrmlem2 23139 cnheibor 23230 cnllycmp 23231 nmhmcn 23395 lmmbr 23532 cfilfcls 23548 iscmet3lem2 23566 flimcfil 23588 bcthlem5 23602 ellimc3 24148 dvlipcn 24262 dvlip2 24263 psercn 24685 pserdvlem2 24687 dvlog2 24905 efopnlem2 24909 logtayl 24912 xrlimcnp 25216 efrlim 25217 lgamucov 25285 cnllysconn 32056 poimirlem30 34399 heicant 34404 ismtyhmeolem 34560 heibor1lem 34565 heibor1 34566 binomcxplemdvbinom 40175 binomcxplemnotnn0 40178 ioorrnopnlem 42085 |
Copyright terms: Public domain | W3C validator |