MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blopn Structured version   Visualization version   GIF version

Theorem blopn 24353
Description: A ball of a metric space is an open set. (Contributed by NM, 9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpenβ€˜π·)
Assertion
Ref Expression
blopn ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ 𝐽)

Proof of Theorem blopn
StepHypRef Expression
1 mopni.1 . . . 4 𝐽 = (MetOpenβ€˜π·)
21blssopn 24348 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜π·) βŠ† 𝐽)
323ad2ant1 1130 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ ran (ballβ€˜π·) βŠ† 𝐽)
4 blelrn 24267 . 2 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ ran (ballβ€˜π·))
53, 4sseldd 3976 1 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) β†’ (𝑃(ballβ€˜π·)𝑅) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βŠ† wss 3941  ran crn 5668  β€˜cfv 6534  (class class class)co 7402  β„*cxr 11246  βˆžMetcxmet 21219  ballcbl 21221  MetOpencmopn 21224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-topgen 17394  df-psmet 21226  df-xmet 21227  df-bl 21229  df-mopn 21230  df-bases 22793
This theorem is referenced by:  neibl  24354  blnei  24355  methaus  24373  met1stc  24374  met2ndci  24375  metrest  24377  prdsxmslem2  24382  metcnp3  24393  zdis  24676  metdseq0  24714  metnrmlem2  24720  cnheibor  24825  cnllycmp  24826  nmhmcn  24991  lmmbr  25130  cfilfcls  25146  iscmet3lem2  25164  flimcfil  25186  bcthlem5  25200  ellimc3  25752  dvlipcn  25871  dvlip2  25872  psercn  26303  pserdvlem2  26305  dvlog2  26527  efopnlem2  26531  logtayl  26534  xrlimcnp  26840  efrlim  26841  efrlimOLD  26842  lgamucov  26910  cnllysconn  34753  poimirlem30  37021  heicant  37026  ismtyhmeolem  37175  heibor1lem  37180  heibor1  37181  binomcxplemdvbinom  43661  binomcxplemnotnn0  43664  ioorrnopnlem  45565
  Copyright terms: Public domain W3C validator