MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss2lem Structured version   Visualization version   GIF version

Theorem metss2lem 24525
Description: Lemma for metss2 24526. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
metss2.1 (𝜑𝐶 ∈ (Met‘𝑋))
metss2.2 (𝜑𝐷 ∈ (Met‘𝑋))
metss2.3 (𝜑𝑅 ∈ ℝ+)
metss2.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
metss2lem ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑦,𝑅   𝑦,𝑆   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
21ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐷 ∈ (Met‘𝑋))
3 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑥𝑋)
4 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑦𝑋)
5 metcl 24343 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
62, 3, 4, 5syl3anc 1372 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
7 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ+)
87rpred 13078 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ)
9 metss2.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
109ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ+)
116, 8, 10ltmuldiv2d 13126 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 ↔ (𝑥𝐷𝑦) < (𝑆 / 𝑅)))
12 metss2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1312anassrs 467 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1413adantlrr 721 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
15 metss2.1 . . . . . . . 8 (𝜑𝐶 ∈ (Met‘𝑋))
1615ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐶 ∈ (Met‘𝑋))
17 metcl 24343 . . . . . . 7 ((𝐶 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1816, 3, 4, 17syl3anc 1372 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1910rpred 13078 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ)
2019, 6remulcld 11292 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ)
21 lelttr 11352 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2218, 20, 8, 21syl3anc 1372 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2314, 22mpand 695 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 → (𝑥𝐶𝑦) < 𝑆))
2411, 23sylbird 260 . . 3 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < (𝑆 / 𝑅) → (𝑥𝐶𝑦) < 𝑆))
2524ss2rabdv 4075 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)} ⊆ {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
26 metxmet 24345 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
271, 26syl 17 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2827adantr 480 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐷 ∈ (∞Met‘𝑋))
29 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑥𝑋)
30 simpr 484 . . . . 5 ((𝑥𝑋𝑆 ∈ ℝ+) → 𝑆 ∈ ℝ+)
31 rpdivcl 13061 . . . . 5 ((𝑆 ∈ ℝ+𝑅 ∈ ℝ+) → (𝑆 / 𝑅) ∈ ℝ+)
3230, 9, 31syl2anr 597 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ+)
3332rpxrd 13079 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ*)
34 blval 24397 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑆 / 𝑅) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
3528, 29, 33, 34syl3anc 1372 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
36 metxmet 24345 . . . . 5 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
3715, 36syl 17 . . . 4 (𝜑𝐶 ∈ (∞Met‘𝑋))
3837adantr 480 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
39 rpxr 13045 . . . 4 (𝑆 ∈ ℝ+𝑆 ∈ ℝ*)
4039ad2antll 729 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
41 blval 24397 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑆 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4238, 29, 40, 41syl3anc 1372 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4325, 35, 423sstr4d 4038 1 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {crab 3435  wss 3950   class class class wbr 5142  cfv 6560  (class class class)co 7432  cr 11155   · cmul 11161  *cxr 11295   < clt 11296  cle 11297   / cdiv 11921  +crp 13035  ∞Metcxmet 21350  Metcmet 21351  ballcbl 21352  MetOpencmopn 21355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-rp 13036  df-xadd 13156  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360
This theorem is referenced by:  metss2  24526  equivcfil  25334  equivcau  25335  equivtotbnd  37786
  Copyright terms: Public domain W3C validator