MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss2lem Structured version   Visualization version   GIF version

Theorem metss2lem 22814
Description: Lemma for metss2 22815. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
metss2.1 (𝜑𝐶 ∈ (Met‘𝑋))
metss2.2 (𝜑𝐷 ∈ (Met‘𝑋))
metss2.3 (𝜑𝑅 ∈ ℝ+)
metss2.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
metss2lem ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑦,𝑅   𝑦,𝑆   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
21ad2antrr 713 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐷 ∈ (Met‘𝑋))
3 simplrl 764 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑥𝑋)
4 simpr 477 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑦𝑋)
5 metcl 22635 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
62, 3, 4, 5syl3anc 1351 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
7 simplrr 765 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ+)
87rpred 12241 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ)
9 metss2.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
109ad2antrr 713 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ+)
116, 8, 10ltmuldiv2d 12289 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 ↔ (𝑥𝐷𝑦) < (𝑆 / 𝑅)))
12 metss2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1312anassrs 460 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1413adantlrr 708 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
15 metss2.1 . . . . . . . 8 (𝜑𝐶 ∈ (Met‘𝑋))
1615ad2antrr 713 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐶 ∈ (Met‘𝑋))
17 metcl 22635 . . . . . . 7 ((𝐶 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1816, 3, 4, 17syl3anc 1351 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1910rpred 12241 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ)
2019, 6remulcld 10462 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ)
21 lelttr 10523 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2218, 20, 8, 21syl3anc 1351 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2314, 22mpand 682 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 → (𝑥𝐶𝑦) < 𝑆))
2411, 23sylbird 252 . . 3 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < (𝑆 / 𝑅) → (𝑥𝐶𝑦) < 𝑆))
2524ss2rabdv 3938 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)} ⊆ {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
26 metxmet 22637 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
271, 26syl 17 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2827adantr 473 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐷 ∈ (∞Met‘𝑋))
29 simprl 758 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑥𝑋)
30 simpr 477 . . . . 5 ((𝑥𝑋𝑆 ∈ ℝ+) → 𝑆 ∈ ℝ+)
31 rpdivcl 12224 . . . . 5 ((𝑆 ∈ ℝ+𝑅 ∈ ℝ+) → (𝑆 / 𝑅) ∈ ℝ+)
3230, 9, 31syl2anr 587 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ+)
3332rpxrd 12242 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ*)
34 blval 22689 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑆 / 𝑅) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
3528, 29, 33, 34syl3anc 1351 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
36 metxmet 22637 . . . . 5 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
3715, 36syl 17 . . . 4 (𝜑𝐶 ∈ (∞Met‘𝑋))
3837adantr 473 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
39 rpxr 12208 . . . 4 (𝑆 ∈ ℝ+𝑆 ∈ ℝ*)
4039ad2antll 716 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
41 blval 22689 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑆 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4238, 29, 40, 41syl3anc 1351 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4325, 35, 423sstr4d 3900 1 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  {crab 3086  wss 3825   class class class wbr 4923  cfv 6182  (class class class)co 6970  cr 10326   · cmul 10332  *cxr 10465   < clt 10466  cle 10467   / cdiv 11090  +crp 12197  ∞Metcxmet 20222  Metcmet 20223  ballcbl 20224  MetOpencmopn 20227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-po 5319  df-so 5320  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7494  df-2nd 7495  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-rp 12198  df-xadd 12318  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232
This theorem is referenced by:  metss2  22815  equivcfil  23595  equivcau  23596  equivtotbnd  34446
  Copyright terms: Public domain W3C validator