MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss2lem Structured version   Visualization version   GIF version

Theorem metss2lem 23573
Description: Lemma for metss2 23574. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
metss2.1 (𝜑𝐶 ∈ (Met‘𝑋))
metss2.2 (𝜑𝐷 ∈ (Met‘𝑋))
metss2.3 (𝜑𝑅 ∈ ℝ+)
metss2.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
metss2lem ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑦,𝑅   𝑦,𝑆   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑥)

Proof of Theorem metss2lem
StepHypRef Expression
1 metss2.2 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
21ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐷 ∈ (Met‘𝑋))
3 simplrl 773 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑥𝑋)
4 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑦𝑋)
5 metcl 23393 . . . . . 6 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
62, 3, 4, 5syl3anc 1369 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ)
7 simplrr 774 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ+)
87rpred 12701 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑆 ∈ ℝ)
9 metss2.3 . . . . . 6 (𝜑𝑅 ∈ ℝ+)
109ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ+)
116, 8, 10ltmuldiv2d 12749 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 ↔ (𝑥𝐷𝑦) < (𝑆 / 𝑅)))
12 metss2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1312anassrs 467 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
1413adantlrr 717 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
15 metss2.1 . . . . . . . 8 (𝜑𝐶 ∈ (Met‘𝑋))
1615ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝐶 ∈ (Met‘𝑋))
17 metcl 23393 . . . . . . 7 ((𝐶 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1816, 3, 4, 17syl3anc 1369 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑥𝐶𝑦) ∈ ℝ)
1910rpred 12701 . . . . . . 7 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → 𝑅 ∈ ℝ)
2019, 6remulcld 10936 . . . . . 6 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ)
21 lelttr 10996 . . . . . 6 (((𝑥𝐶𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝐷𝑦)) ∈ ℝ ∧ 𝑆 ∈ ℝ) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2218, 20, 8, 21syl3anc 1369 . . . . 5 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → (((𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)) ∧ (𝑅 · (𝑥𝐷𝑦)) < 𝑆) → (𝑥𝐶𝑦) < 𝑆))
2314, 22mpand 691 . . . 4 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑅 · (𝑥𝐷𝑦)) < 𝑆 → (𝑥𝐶𝑦) < 𝑆))
2411, 23sylbird 259 . . 3 (((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) ∧ 𝑦𝑋) → ((𝑥𝐷𝑦) < (𝑆 / 𝑅) → (𝑥𝐶𝑦) < 𝑆))
2524ss2rabdv 4005 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)} ⊆ {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
26 metxmet 23395 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
271, 26syl 17 . . . 4 (𝜑𝐷 ∈ (∞Met‘𝑋))
2827adantr 480 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐷 ∈ (∞Met‘𝑋))
29 simprl 767 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑥𝑋)
30 simpr 484 . . . . 5 ((𝑥𝑋𝑆 ∈ ℝ+) → 𝑆 ∈ ℝ+)
31 rpdivcl 12684 . . . . 5 ((𝑆 ∈ ℝ+𝑅 ∈ ℝ+) → (𝑆 / 𝑅) ∈ ℝ+)
3230, 9, 31syl2anr 596 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ+)
3332rpxrd 12702 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑆 / 𝑅) ∈ ℝ*)
34 blval 23447 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑆 / 𝑅) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
3528, 29, 33, 34syl3anc 1369 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) = {𝑦𝑋 ∣ (𝑥𝐷𝑦) < (𝑆 / 𝑅)})
36 metxmet 23395 . . . . 5 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
3715, 36syl 17 . . . 4 (𝜑𝐶 ∈ (∞Met‘𝑋))
3837adantr 480 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝐶 ∈ (∞Met‘𝑋))
39 rpxr 12668 . . . 4 (𝑆 ∈ ℝ+𝑆 ∈ ℝ*)
4039ad2antll 725 . . 3 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
41 blval 23447 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑆 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4238, 29, 40, 41syl3anc 1369 . 2 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐶)𝑆) = {𝑦𝑋 ∣ (𝑥𝐶𝑦) < 𝑆})
4325, 35, 423sstr4d 3964 1 ((𝜑 ∧ (𝑥𝑋𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801   · cmul 10807  *cxr 10939   < clt 10940  cle 10941   / cdiv 11562  +crp 12659  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-rp 12660  df-xadd 12778  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505
This theorem is referenced by:  metss2  23574  equivcfil  24368  equivcau  24369  equivtotbnd  35863
  Copyright terms: Public domain W3C validator