MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gim0to0 Structured version   Visualization version   GIF version

Theorem gim0to0 19901
Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.)
Hypotheses
Ref Expression
gim0to0ALT.a 𝐴 = (Base‘𝑅)
gim0to0ALT.b 𝐵 = (Base‘𝑆)
gim0to0ALT.n 𝑁 = (0g𝑆)
gim0to0ALT.0 0 = (0g𝑅)
Assertion
Ref Expression
gim0to0 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))

Proof of Theorem gim0to0
StepHypRef Expression
1 gimghm 18795 . . . . 5 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2 gim0to0ALT.a . . . . . . 7 𝐴 = (Base‘𝑅)
3 gim0to0ALT.b . . . . . . 7 𝐵 = (Base‘𝑆)
42, 3gimf1o 18794 . . . . . 6 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴1-1-onto𝐵)
5 f1of1 6699 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
64, 5syl 17 . . . . 5 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴1-1𝐵)
71, 6jca 511 . . . 4 (𝐹 ∈ (𝑅 GrpIso 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵))
87anim1i 614 . . 3 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
9 df-3an 1087 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) ↔ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
108, 9sylibr 233 . 2 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴))
11 gim0to0ALT.n . . 3 𝑁 = (0g𝑆)
12 gim0to0ALT.0 . . 3 0 = (0g𝑅)
132, 3, 11, 12f1ghm0to0 19899 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
1410, 13syl 17 1 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067   GrpHom cghm 18746   GrpIso cgim 18788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-gim 18790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator