MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gim0to0 Structured version   Visualization version   GIF version

Theorem gim0to0 19309
Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.)
Hypotheses
Ref Expression
gim0to0.a 𝐴 = (Base‘𝑅)
gim0to0.b 𝐵 = (Base‘𝑆)
gim0to0.n 𝑁 = (0g𝑆)
gim0to0.0 0 = (0g𝑅)
Assertion
Ref Expression
gim0to0 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))

Proof of Theorem gim0to0
StepHypRef Expression
1 gimghm 19304 . . . . 5 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2 gim0to0.a . . . . . . 7 𝐴 = (Base‘𝑅)
3 gim0to0.b . . . . . . 7 𝐵 = (Base‘𝑆)
42, 3gimf1o 19303 . . . . . 6 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴1-1-onto𝐵)
5 f1of1 6861 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
64, 5syl 17 . . . . 5 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴1-1𝐵)
71, 6jca 511 . . . 4 (𝐹 ∈ (𝑅 GrpIso 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵))
87anim1i 614 . . 3 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
9 df-3an 1089 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) ↔ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
108, 9sylibr 234 . 2 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴))
11 gim0to0.0 . . 3 0 = (0g𝑅)
12 gim0to0.n . . 3 𝑁 = (0g𝑆)
132, 3, 11, 12f1ghm0to0 19285 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
1410, 13syl 17 1 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258  0gc0g 17499   GrpHom cghm 19252   GrpIso cgim 19297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ghm 19253  df-gim 19299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator