Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gim0to0 | Structured version Visualization version GIF version |
Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.) |
Ref | Expression |
---|---|
gim0to0ALT.a | ⊢ 𝐴 = (Base‘𝑅) |
gim0to0ALT.b | ⊢ 𝐵 = (Base‘𝑆) |
gim0to0ALT.n | ⊢ 𝑁 = (0g‘𝑆) |
gim0to0ALT.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
gim0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gimghm 18795 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | gim0to0ALT.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
3 | gim0to0ALT.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
4 | 2, 3 | gimf1o 18794 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴–1-1-onto→𝐵) |
5 | f1of1 6699 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴–1-1→𝐵) |
7 | 1, 6 | jca 511 | . . . 4 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵)) |
8 | 7 | anim1i 614 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) |
9 | df-3an 1087 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ↔ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) | |
10 | 8, 9 | sylibr 233 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴)) |
11 | gim0to0ALT.n | . . 3 ⊢ 𝑁 = (0g‘𝑆) | |
12 | gim0to0ALT.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
13 | 2, 3, 11, 12 | f1ghm0to0 19899 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
14 | 10, 13 | syl 17 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 0gc0g 17067 GrpHom cghm 18746 GrpIso cgim 18788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ghm 18747 df-gim 18790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |