![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gim0to0 | Structured version Visualization version GIF version |
Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.) |
Ref | Expression |
---|---|
gim0to0ALT.a | ⊢ 𝐴 = (Base‘𝑅) |
gim0to0ALT.b | ⊢ 𝐵 = (Base‘𝑆) |
gim0to0ALT.n | ⊢ 𝑁 = (0g‘𝑆) |
gim0to0ALT.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
gim0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gimghm 19132 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | gim0to0ALT.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
3 | gim0to0ALT.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
4 | 2, 3 | gimf1o 19131 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴–1-1-onto→𝐵) |
5 | f1of1 6829 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴–1-1→𝐵) |
7 | 1, 6 | jca 512 | . . . 4 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵)) |
8 | 7 | anim1i 615 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) |
9 | df-3an 1089 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ↔ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) | |
10 | 8, 9 | sylibr 233 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴)) |
11 | gim0to0ALT.n | . . 3 ⊢ 𝑁 = (0g‘𝑆) | |
12 | gim0to0ALT.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
13 | 2, 3, 11, 12 | f1ghm0to0 20271 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
14 | 10, 13 | syl 17 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 –1-1→wf1 6537 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 0gc0g 17381 GrpHom cghm 19083 GrpIso cgim 19125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-ghm 19084 df-gim 19127 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |