| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gim0to0 | Structured version Visualization version GIF version | ||
| Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.) |
| Ref | Expression |
|---|---|
| gim0to0.a | ⊢ 𝐴 = (Base‘𝑅) |
| gim0to0.b | ⊢ 𝐵 = (Base‘𝑆) |
| gim0to0.n | ⊢ 𝑁 = (0g‘𝑆) |
| gim0to0.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| gim0to0 | ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gimghm 19176 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 2 | gim0to0.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑅) | |
| 3 | gim0to0.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | 2, 3 | gimf1o 19175 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴–1-1-onto→𝐵) |
| 5 | f1of1 6762 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1→𝐵) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴–1-1→𝐵) |
| 7 | 1, 6 | jca 511 | . . . 4 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵)) |
| 8 | 7 | anim1i 615 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) |
| 9 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ↔ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵) ∧ 𝑋 ∈ 𝐴)) | |
| 10 | 8, 9 | sylibr 234 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴)) |
| 11 | gim0to0.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 12 | gim0to0.n | . . 3 ⊢ 𝑁 = (0g‘𝑆) | |
| 13 | 2, 3, 11, 12 | f1ghm0to0 19157 | . 2 ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
| 14 | 10, 13 | syl 17 | 1 ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 0gc0g 17343 GrpHom cghm 19124 GrpIso cgim 19169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-ghm 19125 df-gim 19171 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |