MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gim0to0 Structured version   Visualization version   GIF version

Theorem gim0to0 19183
Description: A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.)
Hypotheses
Ref Expression
gim0to0.a 𝐴 = (Base‘𝑅)
gim0to0.b 𝐵 = (Base‘𝑆)
gim0to0.n 𝑁 = (0g𝑆)
gim0to0.0 0 = (0g𝑅)
Assertion
Ref Expression
gim0to0 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))

Proof of Theorem gim0to0
StepHypRef Expression
1 gimghm 19178 . . . . 5 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
2 gim0to0.a . . . . . . 7 𝐴 = (Base‘𝑅)
3 gim0to0.b . . . . . . 7 𝐵 = (Base‘𝑆)
42, 3gimf1o 19177 . . . . . 6 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴1-1-onto𝐵)
5 f1of1 6781 . . . . . 6 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1𝐵)
64, 5syl 17 . . . . 5 (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐴1-1𝐵)
71, 6jca 511 . . . 4 (𝐹 ∈ (𝑅 GrpIso 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵))
87anim1i 615 . . 3 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
9 df-3an 1088 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) ↔ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑋𝐴))
108, 9sylibr 234 . 2 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴))
11 gim0to0.0 . . 3 0 = (0g𝑅)
12 gim0to0.n . . 3 𝑁 = (0g𝑆)
132, 3, 11, 12f1ghm0to0 19159 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
1410, 13syl 17 1 ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  Basecbs 17155  0gc0g 17378   GrpHom cghm 19126   GrpIso cgim 19171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-ghm 19127  df-gim 19173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator