| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gicen | Structured version Visualization version GIF version | ||
| Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| gicen.b | ⊢ 𝐵 = (Base‘𝑅) |
| gicen.c | ⊢ 𝐶 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| gicen | ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic 19190 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
| 2 | n0 4302 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
| 3 | gicen.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | gicen.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑆) | |
| 5 | 3, 4 | gimf1o 19183 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓:𝐵–1-1-onto→𝐶) |
| 6 | 3 | fvexi 6845 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 7 | 6 | f1oen 8905 | . . . . 5 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝐵 ≈ 𝐶) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
| 9 | 8 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
| 10 | 2, 9 | sylbi 217 | . 2 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝐵 ≈ 𝐶) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 class class class wbr 5095 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 ≈ cen 8876 Basecbs 17127 GrpIso cgim 19177 ≃𝑔 cgic 19178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-1o 8394 df-map 8761 df-en 8880 df-ghm 19133 df-gim 19179 df-gic 19180 |
| This theorem is referenced by: cyggic 21518 sconnpi1 35355 |
| Copyright terms: Public domain | W3C validator |