![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicen | Structured version Visualization version GIF version |
Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
gicen.b | ⊢ 𝐵 = (Base‘𝑅) |
gicen.c | ⊢ 𝐶 = (Base‘𝑆) |
Ref | Expression |
---|---|
gicen | ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 19137 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 4345 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | gicen.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | gicen.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑆) | |
5 | 3, 4 | gimf1o 19131 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓:𝐵–1-1-onto→𝐶) |
6 | 3 | fvexi 6902 | . . . . . 6 ⊢ 𝐵 ∈ V |
7 | 6 | f1oen 8965 | . . . . 5 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝐵 ≈ 𝐶) |
8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
9 | 8 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
10 | 2, 9 | sylbi 216 | . 2 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝐵 ≈ 𝐶) |
11 | 1, 10 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 class class class wbr 5147 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ≈ cen 8932 Basecbs 17140 GrpIso cgim 19125 ≃𝑔 cgic 19126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-1o 8462 df-en 8936 df-ghm 19084 df-gim 19127 df-gic 19128 |
This theorem is referenced by: cyggic 21119 sconnpi1 34218 |
Copyright terms: Public domain | W3C validator |