MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicen Structured version   Visualization version   GIF version

Theorem gicen 19198
Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
gicen.b 𝐵 = (Base‘𝑅)
gicen.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
gicen (𝑅𝑔 𝑆𝐵𝐶)

Proof of Theorem gicen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgic 19190 . 2 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4302 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
3 gicen.b . . . . . 6 𝐵 = (Base‘𝑅)
4 gicen.c . . . . . 6 𝐶 = (Base‘𝑆)
53, 4gimf1o 19183 . . . . 5 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓:𝐵1-1-onto𝐶)
63fvexi 6845 . . . . . 6 𝐵 ∈ V
76f1oen 8905 . . . . 5 (𝑓:𝐵1-1-onto𝐶𝐵𝐶)
85, 7syl 17 . . . 4 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵𝐶)
98exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵𝐶)
102, 9sylbi 217 . 2 ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝐵𝐶)
111, 10sylbi 217 1 (𝑅𝑔 𝑆𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5095  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  cen 8876  Basecbs 17127   GrpIso cgim 19177  𝑔 cgic 19178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-1o 8394  df-map 8761  df-en 8880  df-ghm 19133  df-gim 19179  df-gic 19180
This theorem is referenced by:  cyggic  21518  sconnpi1  35355
  Copyright terms: Public domain W3C validator