![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicen | Structured version Visualization version GIF version |
Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
gicen.b | ⊢ 𝐵 = (Base‘𝑅) |
gicen.c | ⊢ 𝐶 = (Base‘𝑆) |
Ref | Expression |
---|---|
gicen | ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 19259 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 4348 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | gicen.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | gicen.c | . . . . . 6 ⊢ 𝐶 = (Base‘𝑆) | |
5 | 3, 4 | gimf1o 19252 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓:𝐵–1-1-onto→𝐶) |
6 | 3 | fvexi 6906 | . . . . . 6 ⊢ 𝐵 ∈ V |
7 | 6 | f1oen 8995 | . . . . 5 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝐵 ≈ 𝐶) |
8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
9 | 8 | exlimiv 1926 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵 ≈ 𝐶) |
10 | 2, 9 | sylbi 216 | . 2 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝐵 ≈ 𝐶) |
11 | 1, 10 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∅c0 4324 class class class wbr 5145 –1-1-onto→wf1o 6544 ‘cfv 6545 (class class class)co 7415 ≈ cen 8962 Basecbs 17207 GrpIso cgim 19246 ≃𝑔 cgic 19247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-iun 4997 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7994 df-2nd 7995 df-1o 8487 df-map 8848 df-en 8966 df-ghm 19202 df-gim 19248 df-gic 19249 |
This theorem is referenced by: cyggic 21565 sconnpi1 35079 |
Copyright terms: Public domain | W3C validator |