MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicen Structured version   Visualization version   GIF version

Theorem gicen 19309
Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
gicen.b 𝐵 = (Base‘𝑅)
gicen.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
gicen (𝑅𝑔 𝑆𝐵𝐶)

Proof of Theorem gicen
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgic 19301 . 2 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4359 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
3 gicen.b . . . . . 6 𝐵 = (Base‘𝑅)
4 gicen.c . . . . . 6 𝐶 = (Base‘𝑆)
53, 4gimf1o 19294 . . . . 5 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓:𝐵1-1-onto𝐶)
63fvexi 6921 . . . . . 6 𝐵 ∈ V
76f1oen 9012 . . . . 5 (𝑓:𝐵1-1-onto𝐶𝐵𝐶)
85, 7syl 17 . . . 4 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵𝐶)
98exlimiv 1928 . . 3 (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝐵𝐶)
102, 9sylbi 217 . 2 ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝐵𝐶)
111, 10sylbi 217 1 (𝑅𝑔 𝑆𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1776  wcel 2106  wne 2938  c0 4339   class class class wbr 5148  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cen 8981  Basecbs 17245   GrpIso cgim 19288  𝑔 cgic 19289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-en 8985  df-ghm 19244  df-gim 19290  df-gic 19291
This theorem is referenced by:  cyggic  21609  sconnpi1  35224
  Copyright terms: Public domain W3C validator