MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  giccyg Structured version   Visualization version   GIF version

Theorem giccyg 19727
Description: Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
giccyg (𝐺𝑔 𝐻 → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))

Proof of Theorem giccyg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgic 19109 . 2 (𝐺𝑔 𝐻 ↔ (𝐺 GrpIso 𝐻) ≠ ∅)
2 n0 4342 . . 3 ((𝐺 GrpIso 𝐻) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GrpIso 𝐻))
3 gimghm 19104 . . . . 5 (𝑓 ∈ (𝐺 GrpIso 𝐻) → 𝑓 ∈ (𝐺 GrpHom 𝐻))
4 eqid 2731 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5 eqid 2731 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
64, 5gimf1o 19103 . . . . . 6 (𝑓 ∈ (𝐺 GrpIso 𝐻) → 𝑓:(Base‘𝐺)–1-1-onto→(Base‘𝐻))
7 f1ofo 6827 . . . . . 6 (𝑓:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑓:(Base‘𝐺)–onto→(Base‘𝐻))
86, 7syl 17 . . . . 5 (𝑓 ∈ (𝐺 GrpIso 𝐻) → 𝑓:(Base‘𝐺)–onto→(Base‘𝐻))
94, 5ghmcyg 19723 . . . . 5 ((𝑓 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑓:(Base‘𝐺)–onto→(Base‘𝐻)) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
103, 8, 9syl2anc 584 . . . 4 (𝑓 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
1110exlimiv 1933 . . 3 (∃𝑓 𝑓 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
122, 11sylbi 216 . 2 ((𝐺 GrpIso 𝐻) ≠ ∅ → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
131, 12sylbi 216 1 (𝐺𝑔 𝐻 → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1781  wcel 2106  wne 2939  c0 4318   class class class wbr 5141  ontowfo 6530  1-1-ontowf1o 6531  cfv 6532  (class class class)co 7393  Basecbs 17126   GrpHom cghm 19055   GrpIso cgim 19097  𝑔 cgic 19098  CycGrpccyg 19704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-n0 12455  df-z 12541  df-uz 12805  df-fz 13467  df-seq 13949  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-grp 18797  df-minusg 18798  df-mulg 18923  df-ghm 19056  df-gim 19099  df-gic 19100  df-cyg 19705
This theorem is referenced by:  cygth  21060
  Copyright terms: Public domain W3C validator