![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > giccyg | Structured version Visualization version GIF version |
Description: Cyclicity is a group property, i.e. it is preserved under isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
giccyg | ⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 18062 | . 2 ⊢ (𝐺 ≃𝑔 𝐻 ↔ (𝐺 GrpIso 𝐻) ≠ ∅) | |
2 | n0 4160 | . . 3 ⊢ ((𝐺 GrpIso 𝐻) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GrpIso 𝐻)) | |
3 | gimghm 18057 | . . . . 5 ⊢ (𝑓 ∈ (𝐺 GrpIso 𝐻) → 𝑓 ∈ (𝐺 GrpHom 𝐻)) | |
4 | eqid 2825 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | eqid 2825 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
6 | 4, 5 | gimf1o 18056 | . . . . . 6 ⊢ (𝑓 ∈ (𝐺 GrpIso 𝐻) → 𝑓:(Base‘𝐺)–1-1-onto→(Base‘𝐻)) |
7 | f1ofo 6385 | . . . . . 6 ⊢ (𝑓:(Base‘𝐺)–1-1-onto→(Base‘𝐻) → 𝑓:(Base‘𝐺)–onto→(Base‘𝐻)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐺 GrpIso 𝐻) → 𝑓:(Base‘𝐺)–onto→(Base‘𝐻)) |
9 | 4, 5 | ghmcyg 18650 | . . . . 5 ⊢ ((𝑓 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑓:(Base‘𝐺)–onto→(Base‘𝐻)) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |
10 | 3, 8, 9 | syl2anc 581 | . . . 4 ⊢ (𝑓 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |
11 | 10 | exlimiv 2031 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝐺 GrpIso 𝐻) → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |
12 | 2, 11 | sylbi 209 | . 2 ⊢ ((𝐺 GrpIso 𝐻) ≠ ∅ → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |
13 | 1, 12 | sylbi 209 | 1 ⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1880 ∈ wcel 2166 ≠ wne 2999 ∅c0 4144 class class class wbr 4873 –onto→wfo 6121 –1-1-onto→wf1o 6122 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 GrpHom cghm 18008 GrpIso cgim 18050 ≃𝑔 cgic 18051 CycGrpccyg 18632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-seq 13096 df-0g 16455 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-grp 17779 df-minusg 17780 df-mulg 17895 df-ghm 18009 df-gim 18052 df-gic 18053 df-cyg 18633 |
This theorem is referenced by: cygth 20279 |
Copyright terms: Public domain | W3C validator |