![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofid1 | Structured version Visualization version GIF version |
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
caofid1.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
caofid1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝐶) |
Ref | Expression |
---|---|
caofid1 | ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
3 | 2 | ffnd 6715 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | fnconstg 6776 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
7 | caofid1.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
8 | fnconstg 6776 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (𝐴 × {𝐶}) Fn 𝐴) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
10 | eqidd 2733 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
11 | fvconst2g 7199 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
12 | 4, 11 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
13 | caofid1.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝐶) | |
14 | 13 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝐶) |
15 | 2 | ffvelcdmda 7083 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
16 | oveq1 7412 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝐵) = ((𝐹‘𝑤)𝑅𝐵)) | |
17 | 16 | eqeq1d 2734 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝐵) = 𝐶 ↔ ((𝐹‘𝑤)𝑅𝐵) = 𝐶)) |
18 | 17 | rspccva 3611 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝐶 ∧ (𝐹‘𝑤) ∈ 𝑆) → ((𝐹‘𝑤)𝑅𝐵) = 𝐶) |
19 | 14, 15, 18 | syl2an2r 683 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅𝐵) = 𝐶) |
20 | fvconst2g 7199 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) | |
21 | 7, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) |
22 | 19, 21 | eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅𝐵) = ((𝐴 × {𝐶})‘𝑤)) |
23 | 1, 3, 6, 9, 10, 12, 22 | offveq 7690 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {csn 4627 × cxp 5673 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ∘f cof 7664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 |
This theorem is referenced by: plymul0or 25785 fta1lem 25811 lfl0sc 37940 |
Copyright terms: Public domain | W3C validator |