MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofid1 Structured version   Visualization version   GIF version

Theorem caofid1 7748
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofid0.3 (𝜑𝐵𝑊)
caofid1.4 (𝜑𝐶𝑋)
caofid1.5 ((𝜑𝑥𝑆) → (𝑥𝑅𝐵) = 𝐶)
Assertion
Ref Expression
caofid1 (𝜑 → (𝐹f 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem caofid1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2 (𝜑𝐴𝑉)
2 caofref.2 . . 3 (𝜑𝐹:𝐴𝑆)
32ffnd 6748 . 2 (𝜑𝐹 Fn 𝐴)
4 caofid0.3 . . 3 (𝜑𝐵𝑊)
5 fnconstg 6809 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
64, 5syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
7 caofid1.4 . . 3 (𝜑𝐶𝑋)
8 fnconstg 6809 . . 3 (𝐶𝑋 → (𝐴 × {𝐶}) Fn 𝐴)
97, 8syl 17 . 2 (𝜑 → (𝐴 × {𝐶}) Fn 𝐴)
10 eqidd 2741 . 2 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
11 fvconst2g 7239 . . 3 ((𝐵𝑊𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
124, 11sylan 579 . 2 ((𝜑𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
13 caofid1.5 . . . . 5 ((𝜑𝑥𝑆) → (𝑥𝑅𝐵) = 𝐶)
1413ralrimiva 3152 . . . 4 (𝜑 → ∀𝑥𝑆 (𝑥𝑅𝐵) = 𝐶)
152ffvelcdmda 7118 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
16 oveq1 7455 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝑥𝑅𝐵) = ((𝐹𝑤)𝑅𝐵))
1716eqeq1d 2742 . . . . 5 (𝑥 = (𝐹𝑤) → ((𝑥𝑅𝐵) = 𝐶 ↔ ((𝐹𝑤)𝑅𝐵) = 𝐶))
1817rspccva 3634 . . . 4 ((∀𝑥𝑆 (𝑥𝑅𝐵) = 𝐶 ∧ (𝐹𝑤) ∈ 𝑆) → ((𝐹𝑤)𝑅𝐵) = 𝐶)
1914, 15, 18syl2an2r 684 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅𝐵) = 𝐶)
20 fvconst2g 7239 . . . 4 ((𝐶𝑋𝑤𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶)
217, 20sylan 579 . . 3 ((𝜑𝑤𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶)
2219, 21eqtr4d 2783 . 2 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑅𝐵) = ((𝐴 × {𝐶})‘𝑤))
231, 3, 6, 9, 10, 12, 22offveq 7739 1 (𝜑 → (𝐹f 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {csn 4648   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  plymul0or  26340  fta1lem  26367  lfl0sc  39038
  Copyright terms: Public domain W3C validator