Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofid1 | Structured version Visualization version GIF version |
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
caofid1.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
caofid1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝐶) |
Ref | Expression |
---|---|
caofid1 | ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
3 | 2 | ffnd 6500 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
4 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | fnconstg 6553 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
7 | caofid1.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
8 | fnconstg 6553 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (𝐴 × {𝐶}) Fn 𝐴) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
10 | eqidd 2760 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
11 | fvconst2g 6956 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
12 | 4, 11 | sylan 584 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
13 | caofid1.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝑥𝑅𝐵) = 𝐶) | |
14 | 13 | ralrimiva 3114 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝐶) |
15 | 2 | ffvelrnda 6843 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
16 | oveq1 7158 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝑥𝑅𝐵) = ((𝐹‘𝑤)𝑅𝐵)) | |
17 | 16 | eqeq1d 2761 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝑥𝑅𝐵) = 𝐶 ↔ ((𝐹‘𝑤)𝑅𝐵) = 𝐶)) |
18 | 17 | rspccva 3541 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑆 (𝑥𝑅𝐵) = 𝐶 ∧ (𝐹‘𝑤) ∈ 𝑆) → ((𝐹‘𝑤)𝑅𝐵) = 𝐶) |
19 | 14, 15, 18 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅𝐵) = 𝐶) |
20 | fvconst2g 6956 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) | |
21 | 7, 20 | sylan 584 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) |
22 | 19, 21 | eqtr4d 2797 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑅𝐵) = ((𝐴 × {𝐶})‘𝑤)) |
23 | 1, 3, 6, 9, 10, 12, 22 | offveq 7429 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐵})) = (𝐴 × {𝐶})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 {csn 4523 × cxp 5523 Fn wfn 6331 ⟶wf 6332 ‘cfv 6336 (class class class)co 7151 ∘f cof 7404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 |
This theorem is referenced by: plymul0or 24969 fta1lem 24995 lfl0sc 36651 |
Copyright terms: Public domain | W3C validator |