Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofid2 | Structured version Visualization version GIF version |
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
caofid1.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
caofid2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) |
Ref | Expression |
---|---|
caofid2 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fnconstg 6560 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
5 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | 5 | ffnd 6499 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
7 | caofid1.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
8 | fnconstg 6560 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (𝐴 × {𝐶}) Fn 𝐴) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
10 | fvconst2g 6968 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
11 | 2, 10 | sylan 583 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
12 | eqidd 2739 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
13 | caofid2.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) | |
14 | 13 | ralrimiva 3096 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶) |
15 | 5 | ffvelrnda 6855 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
16 | oveq2 7172 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝐵𝑅𝑥) = (𝐵𝑅(𝐹‘𝑤))) | |
17 | 16 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝐵𝑅𝑥) = 𝐶 ↔ (𝐵𝑅(𝐹‘𝑤)) = 𝐶)) |
18 | 17 | rspccva 3523 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶 ∧ (𝐹‘𝑤) ∈ 𝑆) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
19 | 14, 15, 18 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
20 | fvconst2g 6968 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) | |
21 | 7, 20 | sylan 583 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) |
22 | 19, 21 | eqtr4d 2776 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = ((𝐴 × {𝐶})‘𝑤)) |
23 | 1, 4, 6, 9, 11, 12, 22 | offveq 7442 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 {csn 4513 × cxp 5517 Fn wfn 6328 ⟶wf 6329 ‘cfv 6333 (class class class)co 7164 ∘f cof 7417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 |
This theorem is referenced by: mbfmulc2lem 24392 i1fmulc 24448 itg1mulc 24449 itg2mulc 24492 dvcmulf 24689 coe0 24997 plymul0or 25021 0prjspnrel 40025 expgrowth 41475 |
Copyright terms: Public domain | W3C validator |