Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofid2 | Structured version Visualization version GIF version |
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
caofid1.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
caofid2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) |
Ref | Expression |
---|---|
caofid2 | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fnconstg 6662 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
5 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | 5 | ffnd 6601 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
7 | caofid1.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
8 | fnconstg 6662 | . . 3 ⊢ (𝐶 ∈ 𝑋 → (𝐴 × {𝐶}) Fn 𝐴) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
10 | fvconst2g 7077 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
11 | 2, 10 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
12 | eqidd 2739 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
13 | caofid2.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝐶) | |
14 | 13 | ralrimiva 3103 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶) |
15 | 5 | ffvelrnda 6961 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
16 | oveq2 7283 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑤) → (𝐵𝑅𝑥) = (𝐵𝑅(𝐹‘𝑤))) | |
17 | 16 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝐵𝑅𝑥) = 𝐶 ↔ (𝐵𝑅(𝐹‘𝑤)) = 𝐶)) |
18 | 17 | rspccva 3560 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝐶 ∧ (𝐹‘𝑤) ∈ 𝑆) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
19 | 14, 15, 18 | syl2an2r 682 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = 𝐶) |
20 | fvconst2g 7077 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) | |
21 | 7, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶) |
22 | 19, 21 | eqtr4d 2781 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = ((𝐴 × {𝐶})‘𝑤)) |
23 | 1, 4, 6, 9, 11, 12, 22 | offveq 7557 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {csn 4561 × cxp 5587 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 |
This theorem is referenced by: mbfmulc2lem 24811 i1fmulc 24868 itg1mulc 24869 itg2mulc 24912 dvcmulf 25109 coe0 25417 plymul0or 25441 0prjspnrel 40464 expgrowth 41953 |
Copyright terms: Public domain | W3C validator |