MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofid2 Structured version   Visualization version   GIF version

Theorem caofid2 7700
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofid0.3 (𝜑𝐵𝑊)
caofid1.4 (𝜑𝐶𝑋)
caofid2.5 ((𝜑𝑥𝑆) → (𝐵𝑅𝑥) = 𝐶)
Assertion
Ref Expression
caofid2 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem caofid2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2 (𝜑𝐴𝑉)
2 caofid0.3 . . 3 (𝜑𝐵𝑊)
3 fnconstg 6772 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
5 caofref.2 . . 3 (𝜑𝐹:𝐴𝑆)
65ffnd 6711 . 2 (𝜑𝐹 Fn 𝐴)
7 caofid1.4 . . 3 (𝜑𝐶𝑋)
8 fnconstg 6772 . . 3 (𝐶𝑋 → (𝐴 × {𝐶}) Fn 𝐴)
97, 8syl 17 . 2 (𝜑 → (𝐴 × {𝐶}) Fn 𝐴)
10 fvconst2g 7198 . . 3 ((𝐵𝑊𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
112, 10sylan 579 . 2 ((𝜑𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
12 eqidd 2727 . 2 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
13 caofid2.5 . . . . 5 ((𝜑𝑥𝑆) → (𝐵𝑅𝑥) = 𝐶)
1413ralrimiva 3140 . . . 4 (𝜑 → ∀𝑥𝑆 (𝐵𝑅𝑥) = 𝐶)
155ffvelcdmda 7079 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
16 oveq2 7412 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝐵𝑅𝑥) = (𝐵𝑅(𝐹𝑤)))
1716eqeq1d 2728 . . . . 5 (𝑥 = (𝐹𝑤) → ((𝐵𝑅𝑥) = 𝐶 ↔ (𝐵𝑅(𝐹𝑤)) = 𝐶))
1817rspccva 3605 . . . 4 ((∀𝑥𝑆 (𝐵𝑅𝑥) = 𝐶 ∧ (𝐹𝑤) ∈ 𝑆) → (𝐵𝑅(𝐹𝑤)) = 𝐶)
1914, 15, 18syl2an2r 682 . . 3 ((𝜑𝑤𝐴) → (𝐵𝑅(𝐹𝑤)) = 𝐶)
20 fvconst2g 7198 . . . 4 ((𝐶𝑋𝑤𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶)
217, 20sylan 579 . . 3 ((𝜑𝑤𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶)
2219, 21eqtr4d 2769 . 2 ((𝜑𝑤𝐴) → (𝐵𝑅(𝐹𝑤)) = ((𝐴 × {𝐶})‘𝑤))
231, 4, 6, 9, 11, 12, 22offveq 7690 1 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3055  {csn 4623   × cxp 5667   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7404  f cof 7664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666
This theorem is referenced by:  mbfmulc2lem  25526  i1fmulc  25583  itg1mulc  25584  itg2mulc  25627  dvcmulf  25826  coe0  26140  plymul0or  26165  0prjspnrel  41929  expgrowth  43652
  Copyright terms: Public domain W3C validator