MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofid2 Structured version   Visualization version   GIF version

Theorem caofid2 7745
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1 (𝜑𝐴𝑉)
caofref.2 (𝜑𝐹:𝐴𝑆)
caofid0.3 (𝜑𝐵𝑊)
caofid1.4 (𝜑𝐶𝑋)
caofid2.5 ((𝜑𝑥𝑆) → (𝐵𝑅𝑥) = 𝐶)
Assertion
Ref Expression
caofid2 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶}))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem caofid2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2 (𝜑𝐴𝑉)
2 caofid0.3 . . 3 (𝜑𝐵𝑊)
3 fnconstg 6808 . . 3 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
42, 3syl 17 . 2 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
5 caofref.2 . . 3 (𝜑𝐹:𝐴𝑆)
65ffnd 6747 . 2 (𝜑𝐹 Fn 𝐴)
7 caofid1.4 . . 3 (𝜑𝐶𝑋)
8 fnconstg 6808 . . 3 (𝐶𝑋 → (𝐴 × {𝐶}) Fn 𝐴)
97, 8syl 17 . 2 (𝜑 → (𝐴 × {𝐶}) Fn 𝐴)
10 fvconst2g 7237 . . 3 ((𝐵𝑊𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
112, 10sylan 579 . 2 ((𝜑𝑤𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵)
12 eqidd 2735 . 2 ((𝜑𝑤𝐴) → (𝐹𝑤) = (𝐹𝑤))
13 caofid2.5 . . . . 5 ((𝜑𝑥𝑆) → (𝐵𝑅𝑥) = 𝐶)
1413ralrimiva 3148 . . . 4 (𝜑 → ∀𝑥𝑆 (𝐵𝑅𝑥) = 𝐶)
155ffvelcdmda 7116 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝑆)
16 oveq2 7453 . . . . . 6 (𝑥 = (𝐹𝑤) → (𝐵𝑅𝑥) = (𝐵𝑅(𝐹𝑤)))
1716eqeq1d 2736 . . . . 5 (𝑥 = (𝐹𝑤) → ((𝐵𝑅𝑥) = 𝐶 ↔ (𝐵𝑅(𝐹𝑤)) = 𝐶))
1817rspccva 3630 . . . 4 ((∀𝑥𝑆 (𝐵𝑅𝑥) = 𝐶 ∧ (𝐹𝑤) ∈ 𝑆) → (𝐵𝑅(𝐹𝑤)) = 𝐶)
1914, 15, 18syl2an2r 684 . . 3 ((𝜑𝑤𝐴) → (𝐵𝑅(𝐹𝑤)) = 𝐶)
20 fvconst2g 7237 . . . 4 ((𝐶𝑋𝑤𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶)
217, 20sylan 579 . . 3 ((𝜑𝑤𝐴) → ((𝐴 × {𝐶})‘𝑤) = 𝐶)
2219, 21eqtr4d 2777 . 2 ((𝜑𝑤𝐴) → (𝐵𝑅(𝐹𝑤)) = ((𝐴 × {𝐶})‘𝑤))
231, 4, 6, 9, 11, 12, 22offveq 7735 1 (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = (𝐴 × {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2103  wral 3063  {csn 4648   × cxp 5697   Fn wfn 6567  wf 6568  cfv 6572  (class class class)co 7445  f cof 7708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-ov 7448  df-oprab 7449  df-mpo 7450  df-of 7710
This theorem is referenced by:  mbfmulc2lem  25694  i1fmulc  25751  itg1mulc  25752  itg2mulc  25795  dvcmulf  25994  coe0  26307  plymul0or  26332  0prjspnrel  42515  expgrowth  44244
  Copyright terms: Public domain W3C validator